30 research outputs found

    Voronoi diagram based simulation and experimental validation of austenite in C22 and C35 steels

    Get PDF
    This paper examines the ability of power Voronoi diagram assisted simulation in microstructure modeling during heat treatment. A model is developed for predicting fraction of austenite evolved during continuous heating of steel to austenite range, by integrating geometrical features of power Voronoi diagram and classical nucleation theory. From the simulation results, it is possible to predict the transformed fraction. The simulation results are validated using experiments conducted on two varieties of steels. The maximum error obtained is 2.08%. Thus, power Voronoi assisted simulation can be considered as an effective tool in modeling microstructure evolution during austenitization

    Selective conversion of nitroarenes using a carbon nanotube-ruthenium nanohybrid

    Get PDF
    International audienceRuthenium nanoparticles were assembled on carbon nanotubes and the resulting nanohybrid was used in the hydrazine-mediated catalytic hydrogenation of various nitroarenes, at room temperature. Depending on the solvent, a selective transformation occurred, giving either access to the corresponding aniline or hydroxylamine derivative

    Room temperature Suzuki coupling of aryl iodides, bromides, and chlorides using a heterogeneous carbon nanotube-palladium nanohybrid catalyst

    Get PDF
    International audiencePalladium nanoparticles were immobilized on multi-walled carbon nanotubes by a layer-by-layer approach, resulting in a well-defined assembly. The nanohybrid was found effective in promoting Suzuki cross couplings of various halogenated aromatics, including chlorinated ones, with arylboronic acids under sustainable conditions. The heterogeneous catalyst could also easily be recovered from the reaction mixture and reused with no loss of activity over several cycles

    Appositeness of artificial intelligence in modern medicine

    Get PDF
    Artificial intelligence (AI) can be demonstrated as intelligence demonstrated by machines.AI research has gone through different phases like simulating the brain, modeling human problem solving, formal logic, large databases of knowledge and imitating animal behavior. In the beginning of 21st century, highly mathematical statistical machine learning has dominated the field, was found useful and considered in helping to solve many challenging problems throughout industry and academia. The domain was discovered and work was done on the assumption that human intelligence can be simulated by machines. These initiate some discussions in raising queries about the mind and the ethics of creating artificial beings with human-like intelligence. Myth, fiction, and philosophy are involved in the creation of this field. The debates and discussion also point to concerns of misuse regarding this technology.

    Recurrence Quantification Analysis of System Signals for Detecting Tool and Chatter in Turning

    No full text
    In this thesis, the applications of the recurrence quantification analysis in metal cutting operation in a lathe, with specific objective to detect tool wear and chatter, are presented.This study is based on the discovery that process dynamics in a lathe is low dimensional chaotic. It implies that the machine dynamics is controllable using principles of chaos theory. This understanding is to revolutionize the feature extraction methodologies used in condition monitoring systems as conventional linear methods or models are incapable of capturing the critical and strange behaviors associated with the metal cutting process.As sensor based approaches provide an automated and cost effective way to monitor and control, an efficient feature extraction methodology based on nonlinear time series analysis is much more demanding. The task here is more complex when the information has to be deduced solely from sensor signals since traditional methods do not address the issue of how to treat noise present in real-world processes and its non-stationarity. In an effort to get over these two issues to the maximum possible, this thesis adopts the recurrence quantification analysis methodology in the study since this feature extraction technique is found to be robust against noise and stationarity in the signals.The work consists of two different sets of experiments in a lathe; set-I and set-2. The experiment, set-I, study the influence of tool wear on the RQA variables whereas the set-2 is carried out to identify the sensitive RQA variables to machine tool chatter followed by its validation in actual cutting. To obtain the bounds of the spectrum of the significant RQA variable values, in set-i, a fresh tool and a worn tool are used for cutting. The first part of the set-2 experiments uses a stepped shaft in order to create chatter at a known location. And the second part uses a conical section having a uniform taper along the axis for creating chatter to onset at some distance from the smaller end by gradually increasing the depth of cut while keeping the spindle speed and feed rate constant.The study concludes by revealing the dependence of certain RQA variables; percent determinism, percent recurrence and entropy, to tool wear and chatter unambiguously. The performances of the results establish this methodology to be viable for detection of tool wear and chatter in metal cutting operation in a lathe. The key reason is that the dynamics of the system under study have been nonlinear and the recurrence quantification analysis can characterize them adequately.This work establishes that principles and practice of machining can be considerably benefited and advanced from using nonlinear dynamics and chaos theory.Division of Mechanical Engineering,CUSA

    Analysis of System Signals Based on Cross Recurrence Method for System Dynamics Characterization

    No full text
    Natural systems are inherently non linear. Recurrent behaviours are typical of natural systems. Recurrence is a fundamental property of non linear dynamical systems which can be exploited to characterize the system behaviour effectively. Cross recurrence based analysis of sensor signals from non linear dynamical system is presented in this thesis. The mutual dependency among relatively independent components of a system is referred as coupling. The analysis is done for a mechanically coupled system specifically designed for conducting experiment. Further, cross recurrence method is extended to the actual machining process in a lathe to characterize the chatter during turning. The result is verified by permutation entropy method. Conventional linear methods or models are incapable of capturing the critical and strange behaviours associated with the dynamical process. Hence any effective feature extraction methodologies should invariably gather information thorough nonlinear time series analysis. The sensor signals from the dynamical system normally contain noise and non stationarity. In an effort to get over these two issues to the maximum possible extent, this work adopts the cross recurrence quantification analysis (CRQA) methodology since it is found to be robust against noise and stationarity in the signals. The study reveals that the CRQA is capable of characterizing even weak coupling among system signals. It also divulges the dependence of certain CRQA variables like percent determinism, percent recurrence and entropy to chatter unambiguously. The surrogate data test shows that the results obtained by CRQA are the true properties of the temporal evolution of the dynamics and contain a degree of deterministic structure. The results are verified using permutation entropy (PE) to detect the onset of chatter from the time series. The present study ascertains that this CRP based methodology is capable of recognizing the transition from regular cutting to the chatter cutting irrespective of the machining parameters or work piece material. The results establish this methodology to be feasible for detection of chatter in metal cutting operation in a lathe.Cochin University of Science and TechnologyDivision of Mechanical Engineering,School of Engineering, Cochin University of Science and Technolog

    Permutation entropy based real-time chatter detection using audio signal in turning process

    No full text
    Machine tool chatter is an unfavorable phenomenon during metal cutting, which results in heavy vibration of cutting tool. With increase in depth of cut, the cutting regime changes from chatter-free cutting to one with chatter. In this paper, we propose the use of permutation entropy (PE), a conceptually simple and computationally fast measurement to detect the onset of chatter from the time series using sound signal recorded with a unidirectional microphone. PE can efficiently distinguish the regular and complex nature of any signal and extract information about the dynamics of the process by indicating sudden change in its value. Under situations where the data sets are huge and there is no time for preprocessing and fine-tuning, PE can effectively detect dynamical changes of the system. This makes PE an ideal choice for online detection of chatter, which is not possible with other conventional nonlinear methods. In the present study, the variation of PE under two cutting conditions is analyzed. Abrupt variation in the value of PE with increase in depth of cut indicates the onset of chatter vibrations. The results are verified using frequency spectra of the signals and the nonlinear measure, normalized coarse-grained information rate (NCIR).Cochin University of Science and Technolog

    Co-catalytic oxidative coupling of primary amines to imines using an organic nanotube-gold nanohybrid

    Get PDF
    International audienceA novel nanohybrid structure was synthesized by assembling gold nanoparticles on polymerized polydiacetylene nanotubes. Combination of the nanohybrid with gallacetophenone afforded an efficient cooperative co-catalytic system for the oxidative coupling of primary amines into imines. The system is highly efficient and sustainable as it operates in high yields using minimal amounts of the metal and the quinone, under ambient atmosphere, at room temperature, in water, and is easily recycled

    Spectral Analysis of Bounded Self-adjoint operators - A Linear Algebraic Approach

    No full text
    This thesis Entitled Spectral theory of bounded self-adjoint operators -A linear algebraic approach.The main results of the thesis can be classified as three different approaches to the spectral approximation problems. The truncation method and its perturbed versions are part of the classical linear algebraic approach to the subject. The usage of block Toeplitz-Laurent operators and the matrix valued symbols is considered as a particular example where the linear algebraic techniques are effective in simplifying problems in inverse spectral theory. The abstract approach to the spectral approximation problems via pre-conditioners and Korovkin-type theorems is an attempt to make the computations involved, well conditioned. However, in all these approaches, linear algebra comes as the central object. The objective of this study is to discuss the linear algebraic techniques in the spectral theory of bounded self-adjoint operators on a separable Hilbert space. The usage of truncation method in approximating the bounds of essential spectrum and the discrete spectral values outside these bounds is well known. The spectral gap prediction and related results was proved in the second chapter. The discrete versions of Borg-type theorems, proved in the third chapter, partly overlap with some known results in operator theory. The pure linear algebraic approach is the main novelty of the results proved here.Cochin University of Science and TechnologyDepartment of Mathematics, Cochin University of Science and Technolog
    corecore