4,104 research outputs found
The effect of the relative nuclear size on the nucleus-nucleus interactions
The experimental data on the interactions of light nuclei (d, He(4), C(12)) at the momentum 4.2 GeV/cA with the carbon nuclei were taken in the 2-m propane bubble chamber. The distributions in the number of interacting nucleons, the spectra of protons, the mean energies of secondary pions and protons, the mean fractions of energy transferred to the pion and nucleon components are presented. The results of the investigation of the mechanism of nucleus-nucleus interactions can be used to calculate the nuclear cascades in the atmosphere
Quark Model and Neutral Strange Secondary Production by Neutrino and Antineutrino Beams
The experimental data on and production by and
beams are compared with the predictions of quark model assuming
that the direct production of secondaries dominates. Disagreement of these
predictions with the data allows one to suppose that there exists considerable
resonance decay contribution to the multiplicities of produced secondaries.Comment: 6 pages, no figures, 2 table
Quantum fluctuations, quanta of electromagnetic interaction, quantum electronic bound states
Based on the concepts of the quantum field theory of virtual photons as
quanta of electromagnetic interaction, we discuss the physical content of the
phenomena underlying the principle of quantum uncertainties. We consider the
features of the uncertainty relations and the properties of the elementary
particles (electrons, protons, etc.) under the conditions of the formation of
quantum bound states at atomic and subatomic distances
The theoretical DFT study of electronic structure of thin Si/SiO2 quantum nanodots and nanowires
The atomic and electronic structure of a set of proposed thin (1.6 nm in
diameter) silicon/silica quantum nanodots and nanowires with narrow interface,
as well as parent metastable silicon structures (1.2 nm in diameter), was
studied in cluster and PBC approaches using B3LYP/6-31G* and PW PP LDA
approximations. The total density of states (TDOS) of the smallest
quasispherical silicon quantum dot (Si85) corresponds well to the TDOS of the
bulk silicon. The elongated silicon nanodots and 1D nanowires demonstrate the
metallic nature of the electronic structure. The surface oxidized layer opens
the bandgap in the TDOS of the Si/SiO2 species. The top of the valence band and
the bottom of conductivity band of the particles are formed by the silicon core
derived states. The energy width of the bandgap is determined by the length of
the Si/SiO2 clusters and demonstrates inverse dependence upon the size of the
nanostructures. The theoretical data describes the size confinement effect in
photoluminescence spectra of the silica embedded nanocrystalline silicon with
high accuracy.Comment: 22 pages, 5 figures, 1 tabl
Observation of narrow baryon resonance decaying into in pA-interactions at with SVD-2 setup
SVD-2 experiment data have been analyzed to search for an exotic baryon
state, the -baryon, in a decay mode at on IHEP
accelerator. The reaction with a limited multiplicity was
used in the analysis. The invariant mass spectrum shows a resonant
structure with and . The statistical significance of this peak was estimated to be of . The mass and width of the resonance is compatible with the recently
reported - baryon with positive strangeness which was predicted as an
exotic pentaquark () baryon state. The total cross section for
production in pN-interactions for was estimated to be
and no essential deviation from A-dependence for inelastic
events was found.Comment: 8 pages, 7 figures, To be submitted to Yadernaya Fizika. v3-v5 - Some
references added, minor typos correcte
Fractional quantum Hall effect without energy gap
In the fractional quantum Hall effect regime we measure diagonal
() and Hall () magnetoresistivity tensor components of
two-dimensional electron system (2DES) in gated GaAs/AlGaAs
heterojunctions, together with capacitance between 2DES and the gate. We
observe 1/3- and 2/3-fractional quantum Hall effect at rather low magnetic
fields where corresponding fractional minima in the thermodynamical density of
states have already disappeared manifesting complete suppression of the
quasiparticle energy gaps.Comment: 4 pages, 4 figure
- …