3,827 research outputs found

    Long sandwich modules for photon veto detectors

    Full text link
    Long lead-scintillator sandwich modules developed for the BNL experiment KOPIO are described. The individual 4 m long module consists of 15 layers of 7 mm thick extruded scintillator and 15 layers of 1 mm lead absorber. Readout is implemented via WLS fibers glued into grooves in a scintillator with 7 mm spacing and viewed from both ends by the phototubes. Time resolution of 300 ps for cosmic MIPs was obtained. Light output stability monitored for 2 years shows no degradation beyond the measurement errors. A 4 m long C-bent sandwich module was also manufactured and tested.Comment: 14 pages, 13 figures, 1 tabl

    Helical vortex phase in the non-centrosymmetric CePt_3Si

    Full text link
    We consider the role of magnetic fields on the broken inversion superconductor CePt_3Si. We show that upper critical field for a field along the c-axis exhibits a much weaker paramagnetic effect than for a field applied perpendicular to the c-axis. The in-plane paramagnetic effect is strongly reduced by the appearance of helical structure in the order parameter. We find that to get good agreement between theory and recent experimental measurements of H_{c2}, this helical structure is required. We propose a Josephson junction experiment that can be used to detect this helical order. In particular, we predict that Josephson current will exhibit a magnetic interference pattern for a magnetic field applied perpendicular to the junction normal. We also discuss unusual magnetic effects associated with the helical order.Comment: 5 pages, 2 figures, Accepted as Phys Rev. Lette

    Pressure-temperature phase diagram of ferromagnetic superconductors

    Full text link
    The symmetry approach to the description of the (P,T) phase diagram of ferromagnet superconductors with triplet pairing is developed. Taking into account the recent experimental observations made on UCoGe it is considered the case of a crystal with orthorhombic structure and strong spin-orbital coupling. It is shown that formation of ferromagnet superconducting state from a superconducting state is inevitably accompanied by the first order type transition.Comment: 4 pages, 1 figur

    Nonuniform mixed-parity superfluid state in Fermi gases

    Full text link
    We study the effects of dipole interaction on the superfluidity in a homogeneous Fermi gas with population imbalance. We show that the Larkin-Ovchinnikov-Fulde-Ferrell phase is replaced by another nonuniform superfluid phase, in which the order parameter has a nonzero triplet component induced by the dipole interaction.Comment: 4 pages, 1 figur

    NMR relaxation rate in non-centrosymmetric superconductors

    Full text link
    The spin-lattice relaxation rate of nuclear magnetic resonance in a clean superconductor without inversion center is calculated for arbitrary pairing symmetry and band structure, in the presence of strong spin-orbit coupling.Comment: 4 page

    Recent developments in unconventional superconductivity theory

    Full text link
    The review of recent developments in the unconventional superconductivity theory is given. In the fist part I consider the physical origin of the Kerr rotation polarization of light reflected from the surface of superconducting Sr2RuO4Sr_2RuO_4. Then the comparison of magneto-optical responses in superconductors with orbital and spin spontaneous magnetization is presented. The latter result is applied to the estimation of the magneto-optical properties of neutral superfluids with spontaneous magnetization. The second part is devoted to the natural optical activity or gyrotropy properties of noncentrosymmetric metals in their normal and superconducting states. The temperature behavior of the gyrotropy coefficient is compared with the temperature behavior of paramagnetic susceptibility determining the noticeable increase of the paramagnetic limiting field in noncentrosymmetric superconductors. In the last chapter I describe the order parameter and the symmetry of superconducting state in the itinerant ferromagnet with orthorhombic symmetry. Finally the Josephson coupling between two adjacent ferromagnet superconducting domains is discussed.Comment: 15 page

    Upper critical field in superconductors near ferromagnetic quantum critical points; UCoGe

    Full text link
    We study the strong-coupling superconductivity near ferromagnetic quantum critical points, mainly focusing on the upper critical fields Hc2H_{c2}. Based on our simple model calculations, we discuss experimentally observed unusual behaviors of Hc2H_{c2} in a recently discovered ferromagnetic superconductor UCoGe. Especially, the large anisotropy between Hc2∥aH_{c2}\parallel a-axis and Hc2∥cH_{c2}\parallel c-axis, and the strong-coupling behaviors in Hc2∥aH_{c2}^{\parallel a} are investigated. We also examine effects of non-analytic corrections in the spin susceptibility on the superconductivity, which can arise from effective long range interactions due to particle-hole excitations.Comment: Proceedings of ICHE2010, Toky

    Charged-Surface Instability Development in Liquid Helium; Exact Solutions

    Get PDF
    The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensional (3D) potential motion of a fluid are reduced to the well-known equations describing the 3D Laplacian growth process. The integrability of these equations in 2D geometry allows the analytic description of the free-surface evolution up to the formation of cuspidal singularities at the surface.Comment: latex, 5 pages, no figure
    • …
    corecore