61,154 research outputs found

    Universal features of electron-phonon interactions in atomic wires

    Full text link
    The effect of electron-phonon interactions in the conductance through metallic atomic wires is theoretically analyzed. The proposed model allows to consider an atomic size region electrically and mechanically coupled to bulk electrodes. We show that under rather general conditions the features due to electron-phonon coupling are described by universal functions of the system transmission coefficients. It is predicted that the reduction of the conductance due to electron-phonon coupling which is observed close to perfect transmission should evolve into an enhancement at low transmission. This crossover can be understood in a transparent way as arising from the competition between elastic and inelastic processes.Comment: 5 pages, 5 figure

    Evidence for a resonant cyclotron line in IGR J16493-4348 from the Swift-BAT hard X-ray survey

    Get PDF
    Resonant absorption cyclotron features are a key diagnostic tool to directly measure the strength of the magnetic field of accreting neutron stars. However, typical values for cyclotron features lie in the high-energy part of the spectrum between 20 keV and 50 keV, where detection is often damped by the low statistics from single pointed observations. We show that long-term monitoring campaign performed with Swift-BAT of persistently, but faint, accreting high-mass X-ray binaries is able to reveal in their spectra the presence of cyclotron features. We extracted the average Swift-BAT 15-150 keV spectrum from the 54 months long Swift-BAT survey of the high-mass X-ray source IGR J16493-4348. To constrain the broadband spectrum we used soft X-ray spectra from Swift-XRT and Suzaku pointed observations. We model the spectra using a set of phenomenological models usually adopted to describe the energy spectrum of accreting high-mass X-ray binaries; irrespective of the models we used, we found significant improvements in the spectral fits adding to the models a broad (10 keV width) absorption feature, with best-fitting energy estimate between 30 and 33 keV, that we interpret as evidence for a resonant cyclotron absorption feature. We also discuss instrumental issues related to the use of Swift-BAT for this kind of studies and the statistical method to weight the confidence level of this detection. Correcting for the gravitational redshift of a 1.4 M_{\sun} neutron star, the inferred surface magnetic field is Bsurf 3.7 x 10^{12} Gauss. The spectral parameters of IGR J16493-4348 fit well with empirical correlations observed when the whole sample of high-mass binaries with detected cyclotron features is considered.Comment: Published in Astronomy & Astrophysics, 2011, 532, A7

    The Swift view of Supergiant Fast X-ray Transients

    Full text link
    We report here on the recent results of a monitoring campaign we have been carrying out with Swift/XRT on a sample of four Supergiant Fast X-ray Transients. The main goal of this large programme (with a net Swift/XRT exposure of 540 ks, updated to 2009, August, 31) is to address several main open issues related to this new class of High Mass X-ray Binaries hosting OB supergiant stars as companions. Here we summarize the most important results obtained between October 2007 and August 2009.Comment: Published on the Proceedings of the conference X-Ray Astronomy 2009, Present Status, multiwavelenght approach and future perspectives, September 7 - 11, 2009, Bologna, Italy. Revised version according to the referee's repor
    corecore