369 research outputs found

    Anthropogenic load іs a leading factor in the morphological variability of Chondrula tridens (Gastropoda, Enidae) in the northwestern Azov Sea region

    Get PDF
    Morphometric data are widely used in biology to assess intraspecific and inter-population variability and for bioindication and environmental condition assessment. The following hypotheses have been experimentally tested in the paper: 1) the vegetation type affects the change in the shell shape of Chondrula tridens martynovi Gural-Sverlova & Gural, 2010; 2) the change in the shell shape of this species is influenced by the biotope moisture regime; 3) the shell shape changes depending on the anthropogenic load level. The material in the form of empty, fully formed Ch. tridens shells was collected in 2019 in the north-western Azov region within the basin of the Molochna River. The collection points were located in settlements and outside them and differed in vegetation, moisture regime and level of anthropogenic load. The vegetation has been expertly attributed to two alternative types: herbaceous vegetation and tree plantations. By moisture level, the locations have been assessed as xerophytic and mesoxerophytic. The anthropogenic load levels have been assessed as low, medium and high. The study revealed that the morphological characteristics of Ch. tridens demonstrate a significant component of variability, which is due to the shell size. The shell size depends on the anthropogenic impact level. Under conditions of high anthropogenic impact, the shell size increases. Mollusks from locations with low and medium anthropogenic impact levels did not differ in shell size. After extraction of the size component, morphological properties develop three main trends of variability. The mouth apparatus development of mollusks does not depend on the vegetation type, but depends on the biotope moisture level and the anthropogenic transformation level. The mollusk shell elongation was observed to have the opposite dynamics of the height parameters in relation to the width and depended on the level of anthropogenic load. Rearrangement in the mouth apparatus depended on the biotope moisture level and the anthropogenic load level. There were distinguished four clusters, the quantitative morphological features of which allowed us to identify them as morphotypes. Each location was characterized by a combination of different morphotypes, according to which the sampling points may be classified. Morphotype 1 corresponds to biotopes with low level of anthropogenic load, morphotype 4 corresponded to biotopes with high anthropogenic load. Morphotypes 2 and 3 corresponded to moderate level of anthropogenic load. Vegetation type is not an important factor in determining the morphotypic diversity of populations. Under xerophytic conditions, morphotypes 2 and 3 are more common, and under mesoxerophytic conditions, morphotypes 1 and 4 are more common. The range of molluscs in different habitats needs to be expanded in the future to clarify climatic and other patterns

    Plasma resonance at low magnetic fields as a probe of vortex line meandering in layered superconductors

    Full text link
    We consider the magnetic field dependence of the plasma resonance frequency in pristine and in irradiated Bi2_2Sr2_2CaCu2_2O8_8 crystals near TcT_c. At low magnetic fields we relate linear in field corrections to the plasma frequency to the average distance between the pancake vortices in the neighboring layers (wandering length). We calculate the wandering length in the case of thermal wiggling of vortex lines, taking into account both Josephson and magnetic interlayer coupling of pancakes. Analyzing experimental data, we found that (i) the wandering length becomes comparable with the London penetration depth near Tc_{c} and (ii) at small melting fields (<20< 20 G) the wandering length does not change much at the melting transition. This shows existence of the line liquid phase in this field range. We also found that pinning by columnar defects affects weakly the field dependence of the plasma resonance frequency near TcT_c.Comment: RevTex, 4 pages, 2 PS figures, Submitted to Phys. Rev.

    Numerical and experimental studies of the carbon etching in EUV-induced plasma

    Get PDF
    We have used a combination of numerical modeling and experiments to study carbon etching in the presence of a hydrogen plasma. We model the evolution of a low density EUV-induced plasma during and after the EUV pulse to obtain the energy resolved ion fluxes from the plasma to the surface. By relating the computed ion fluxes to the experimentally observed etching rate at various pressures and ion energies, we show that at low pressure and energy, carbon etching is due to chemical sputtering, while at high pressure and energy a reactive ion etching process is likely to dominate

    Evolution of Large Scale Curvature Fluctuations During the Perturbative Decay of the Inflaton

    Full text link
    We study the evolution of cosmological fluctuations during and after inflation driven by a scalar field coupled to a perfect fluid through afriction term. During the slow-roll regime for the scalar field, the perfect fluid is also frozen and isocurvature perturbations are generated. After the end of inflation, during the decay of the inflaton, we find that a change in the observationally relevant large scale curvature fluctuations is possible.Comment: 9 pages, 2 figures; v2: version published in PR

    Thermal Suppression of Strong Pinning

    Full text link
    We study vortex pinning in layered type-II superconductors in the presence of uncorrelated disorder for decoupled layers. Introducing the new concept of variable-range thermal smoothing, we describe the interplay between strong pinning and thermal fluctuations. We discuss the appearance and analyze the evolution in temperature of two distinct non-linear features in the current-voltage characteristics. We show how the combination of layering and electromagnetic interactions leads to a sharp jump in the critical current for the onset of glassy response as a function of temperature.Comment: LaTeX 2.09, 4 pages, 2 figures, submitted to Phys. Rev. Let

    Evidence for LineLike Vortex Liquid Phase in Tl2_2Ba2_2CaCu2_2O8_8 Probed by the Josephson Plasma Resonance

    Full text link
    We measured the Josephson plasma resonance (JPR) in optimally doped Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} thin films using terahertz time-domain spectroscopy in transmission. The temperature and magnetic field dependence of the JPR frequency shows that the c-axis correlations of pancake vortices remain intact at the transition from the vortex solid to the liquid phase. In this respect Tl2_2Ba2_2CaCu2_2O8+δ_{8+\delta} films, withanisotropy parameter γ150\gamma\approx 150, are similar to the less anisotropic YBa2_2Cu3_3O7δ_{7-\delta} (γ8)(\gamma\approx 8) rather than to the most anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} single crystals γ500\gamma\geq 500).Comment: Submitted to Physical Review Letter

    Vortex shear effects in layered superconductors

    Full text link
    Motivated by recent transport and magnetization measurements in BSCCO samples [B. Khaykovich et. al., Phys. Rev. B 61, R9261 (2000)], we present a simple macroscopic model describing effects of inhomogeneous current distribution and shear in a layered superconductor. Parameters of the model are deduced from a microscopic calculation. Our model accounts for the strong current non-linearities and the re-entrant temperature dependence observed in the experiment.Comment: 11 pages, 7 figures, submitted to Phys. Rev.

    Josephson Coupling, Phase Correlations, and Josephson Plasma Resonance in Vortex Liquid Phase

    Full text link
    Josephson plasma resonance has been introduced recently as a powerful tool to probe interlayer Josephson coupling in different regions of the vortex phase diagram in layered superconductors. In the liquid phase, the high temperature expansion with respect to the Josephson coupling connects the Josephson plasma frequency with the phase correlation function. This function, in turn, is directly related to the pair distribution function of the liquid. We develop a recipe to extract the phase and density correlation functions from the dependencies of the plasma resonance frequency ωp(B)\omega_p({\bf B}) and the cc axis conductivity σc(B)\sigma_c({\bf B}) on the {\it ab}-component of the magnetic field at fixed {\it c} -component. Using Langevin dynamic simulations of two-dimensional vortex arrays we calculate density and phase correlation functions at different temperatures. Calculated phase correlations describe very well the experimental angular dependence of the plasma resonance field. We also demonstrate that in the case of weak damping in the liquid phase, broadening of the JPR line is caused mainly by random Josephson coupling arising from the density fluctuations of pancake vortices. In this case the JPR line has a universal shape, which is determined only by parameters of the superconductors and temperature.Comment: 22 pages, 6 figures, to appear in Phys. Rev. B, December

    Following the Precepts of I.M. Gubkin

    Get PDF
    On April 17 2020 National University of Oil and Gas “Gubkin University” celebrates 90th anniversary. The article shows that all these years the University has been strictly following the principles formulated by the founder of the university, academician Ivan Gubkin. The most important of them are the following. The University is the leader of domestic higher oil and gas education, carrying out the advanced training of oil and gas engineering personnel on the basis of innovations in the content and teaching technology. The University is a polytechnic university that combines the entire technological chain of the hydrocarbon industry with its specialties and directions – from finding them to supplying to the market. The University is the driver of the scientific and technological progress of hydrocarbon energy

    Abrupt Change of Josephson Plasma Frequency at the Phase Boundary of the Bragg Glass in Bi_2Sr_2CaCu_2O_{8+\delta}

    Full text link
    We report the first detailed and quantitative study of the Josephson coupling energy in the vortex liquid, Bragg glass and vortex glass phases of Bi_2Sr_2CaCu_2O_{8+\delta} by the Josephson plasma resonance. The measurements revealed distinct features in the T- and H-dependencies of the plasma frequency ωpl\omega_{pl} for each of these three vortex phases. When going across either the Bragg-to-vortex glass or the Bragg-to-liquid transition line, ωpl\omega_{pl} shows a dramatic change. We provide a quantitative discussion on the properties of these phase transitions, including the first order nature of the Bragg-to-vortex glass transition.Comment: 5pages, 4figure
    corecore