369 research outputs found
Anthropogenic load іs a leading factor in the morphological variability of Chondrula tridens (Gastropoda, Enidae) in the northwestern Azov Sea region
Morphometric data are widely used in biology to assess intraspecific and inter-population variability and for bioindication and environmental condition assessment. The following hypotheses have been experimentally tested in the paper: 1) the vegetation type affects the change in the shell shape of Chondrula tridens martynovi Gural-Sverlova & Gural, 2010; 2) the change in the shell shape of this species is influenced by the biotope moisture regime; 3) the shell shape changes depending on the anthropogenic load level. The material in the form of empty, fully formed Ch. tridens shells was collected in 2019 in the north-western Azov region within the basin of the Molochna River. The collection points were located in settlements and outside them and differed in vegetation, moisture regime and level of anthropogenic load. The vegetation has been expertly attributed to two alternative types: herbaceous vegetation and tree plantations. By moisture level, the locations have been assessed as xerophytic and mesoxerophytic. The anthropogenic load levels have been assessed as low, medium and high. The study revealed that the morphological characteristics of Ch. tridens demonstrate a significant component of variability, which is due to the shell size. The shell size depends on the anthropogenic impact level. Under conditions of high anthropogenic impact, the shell size increases. Mollusks from locations with low and medium anthropogenic impact levels did not differ in shell size. After extraction of the size component, morphological properties develop three main trends of variability. The mouth apparatus development of mollusks does not depend on the vegetation type, but depends on the biotope moisture level and the anthropogenic transformation level. The mollusk shell elongation was observed to have the opposite dynamics of the height parameters in relation to the width and depended on the level of anthropogenic load. Rearrangement in the mouth apparatus depended on the biotope moisture level and the anthropogenic load level. There were distinguished four clusters, the quantitative morphological features of which allowed us to identify them as morphotypes. Each location was characterized by a combination of different morphotypes, according to which the sampling points may be classified. Morphotype 1 corresponds to biotopes with low level of anthropogenic load, morphotype 4 corresponded to biotopes with high anthropogenic load. Morphotypes 2 and 3 corresponded to moderate level of anthropogenic load. Vegetation type is not an important factor in determining the morphotypic diversity of populations. Under xerophytic conditions, morphotypes 2 and 3 are more common, and under mesoxerophytic conditions, morphotypes 1 and 4 are more common. The range of molluscs in different habitats needs to be expanded in the future to clarify climatic and other patterns
Plasma resonance at low magnetic fields as a probe of vortex line meandering in layered superconductors
We consider the magnetic field dependence of the plasma resonance frequency
in pristine and in irradiated BiSrCaCuO crystals near . At
low magnetic fields we relate linear in field corrections to the plasma
frequency to the average distance between the pancake vortices in the
neighboring layers (wandering length). We calculate the wandering length in the
case of thermal wiggling of vortex lines, taking into account both Josephson
and magnetic interlayer coupling of pancakes. Analyzing experimental data, we
found that (i) the wandering length becomes comparable with the London
penetration depth near T and (ii) at small melting fields ( G) the
wandering length does not change much at the melting transition. This shows
existence of the line liquid phase in this field range. We also found that
pinning by columnar defects affects weakly the field dependence of the plasma
resonance frequency near .Comment: RevTex, 4 pages, 2 PS figures, Submitted to Phys. Rev.
Numerical and experimental studies of the carbon etching in EUV-induced plasma
We have used a combination of numerical modeling and experiments to study
carbon etching in the presence of a hydrogen plasma. We model the evolution of
a low density EUV-induced plasma during and after the EUV pulse to obtain the
energy resolved ion fluxes from the plasma to the surface. By relating the
computed ion fluxes to the experimentally observed etching rate at various
pressures and ion energies, we show that at low pressure and energy, carbon
etching is due to chemical sputtering, while at high pressure and energy a
reactive ion etching process is likely to dominate
Evolution of Large Scale Curvature Fluctuations During the Perturbative Decay of the Inflaton
We study the evolution of cosmological fluctuations during and after
inflation driven by a scalar field coupled to a perfect fluid through afriction
term. During the slow-roll regime for the scalar field, the perfect fluid is
also frozen and isocurvature perturbations are generated. After the end of
inflation, during the decay of the inflaton, we find that a change in the
observationally relevant large scale curvature fluctuations is possible.Comment: 9 pages, 2 figures; v2: version published in PR
Thermal Suppression of Strong Pinning
We study vortex pinning in layered type-II superconductors in the presence of
uncorrelated disorder for decoupled layers. Introducing the new concept of
variable-range thermal smoothing, we describe the interplay between strong
pinning and thermal fluctuations. We discuss the appearance and analyze the
evolution in temperature of two distinct non-linear features in the
current-voltage characteristics. We show how the combination of layering and
electromagnetic interactions leads to a sharp jump in the critical current for
the onset of glassy response as a function of temperature.Comment: LaTeX 2.09, 4 pages, 2 figures, submitted to Phys. Rev. Let
Evidence for LineLike Vortex Liquid Phase in TlBaCaCuO Probed by the Josephson Plasma Resonance
We measured the Josephson plasma resonance (JPR) in optimally doped
TlBaCaCuO thin films using terahertz time-domain
spectroscopy in transmission. The temperature and magnetic field dependence of
the JPR frequency shows that the c-axis correlations of pancake vortices remain
intact at the transition from the vortex solid to the liquid phase. In this
respect TlBaCaCuO films, withanisotropy parameter
, are similar to the less anisotropic
YBaCuO rather than to the most
anisotropic BiSrCaCuO single crystals ).Comment: Submitted to Physical Review Letter
Vortex shear effects in layered superconductors
Motivated by recent transport and magnetization measurements in BSCCO samples
[B. Khaykovich et. al., Phys. Rev. B 61, R9261 (2000)], we present a simple
macroscopic model describing effects of inhomogeneous current distribution and
shear in a layered superconductor. Parameters of the model are deduced from a
microscopic calculation. Our model accounts for the strong current
non-linearities and the re-entrant temperature dependence observed in the
experiment.Comment: 11 pages, 7 figures, submitted to Phys. Rev.
Josephson Coupling, Phase Correlations, and Josephson Plasma Resonance in Vortex Liquid Phase
Josephson plasma resonance has been introduced recently as a powerful tool to
probe interlayer Josephson coupling in different regions of the vortex phase
diagram in layered superconductors. In the liquid phase, the high temperature
expansion with respect to the Josephson coupling connects the Josephson plasma
frequency with the phase correlation function. This function, in turn, is
directly related to the pair distribution function of the liquid. We develop a
recipe to extract the phase and density correlation functions from the
dependencies of the plasma resonance frequency and the
axis conductivity on the {\it ab}-component of the
magnetic field at fixed {\it c} -component. Using Langevin dynamic simulations
of two-dimensional vortex arrays we calculate density and phase correlation
functions at different temperatures. Calculated phase correlations describe
very well the experimental angular dependence of the plasma resonance field. We
also demonstrate that in the case of weak damping in the liquid phase,
broadening of the JPR line is caused mainly by random Josephson coupling
arising from the density fluctuations of pancake vortices. In this case the JPR
line has a universal shape, which is determined only by parameters of the
superconductors and temperature.Comment: 22 pages, 6 figures, to appear in Phys. Rev. B, December
Following the Precepts of I.M. Gubkin
On April 17 2020 National University of Oil and Gas “Gubkin University” celebrates 90th anniversary. The article shows that all these years the University has been strictly following the principles formulated by the founder of the university, academician Ivan Gubkin. The most important of them are the following. The University is the leader of domestic higher oil and gas education, carrying out the advanced training of oil and gas engineering personnel on the basis of innovations in the content and teaching technology. The University is a polytechnic university that combines the entire technological chain of the hydrocarbon industry with its specialties and directions – from finding them to supplying to the market. The University is the driver of the scientific and technological progress of hydrocarbon energy
Abrupt Change of Josephson Plasma Frequency at the Phase Boundary of the Bragg Glass in Bi_2Sr_2CaCu_2O_{8+\delta}
We report the first detailed and quantitative study of the Josephson coupling
energy in the vortex liquid, Bragg glass and vortex glass phases of
Bi_2Sr_2CaCu_2O_{8+\delta} by the Josephson plasma resonance. The measurements
revealed distinct features in the T- and H-dependencies of the plasma frequency
for each of these three vortex phases. When going across either
the Bragg-to-vortex glass or the Bragg-to-liquid transition line,
shows a dramatic change. We provide a quantitative discussion on the properties
of these phase transitions, including the first order nature of the
Bragg-to-vortex glass transition.Comment: 5pages, 4figure
- …