3 research outputs found

    ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ получСния трихлорсилана для производства поликристалличСского крСмния

    Get PDF
    Novel technical solutions and ideas for increasing the yield of solar and semiconductor grade polycrystalline silicon processes have been analyzed. The predominant polycrystalline silicon technology is currently still the Siemens process including the conversion of technical grade silicon (synthesized by carbon-thermal reduction of quartzites) to trichlorosilane followed by rectification and hydrogen reduction. The cost of product silicon can be cut down by reducing the trichlorosilane synthesis costs through process and equipment improvement. Advantages, drawbacks and production cost reduction methods have been considered with respect to four common trichlorosilane synthesis processes: hydrogen chloride exposure of technical grade silicon (direct chlorination, DC), homogeneous hydration of tetrachlorosilane (conversion), tetrachlorosilane and hydrogen exposure of silicon (hydro chlorination silicon, HC), and catalyzed tetrachlorosilane and dichlorosilane reaction (redistribution of anti-disproportioning reaction). These processes remain in use and are permanently improved. Catalytic processes play an important role on silicon surface, and understanding their mechanisms can help find novel applications and obtain new results. It has been noted that indispensable components of various equipment and process designs are recycling steps and combined processes including active distillation. They provide for the most complete utilization of raw trichlorosilane, increase the process yield and cut down silicon costΠ’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Π½ΠΎΠ²Ρ‹Ρ… тСхничСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΈ ΠΈΠ΄Π΅ΠΉ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Ρ… Π½Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ процСссов получСния поликристалличСского крСмния «солнСчного» ΠΈ ΠΏΠΎΠ»ΡƒΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ качСства. Π”ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ поликристалличСского крСмния остаСтся БимСнс-процСсс, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ тСхничСского крСмния (ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ карботСрмичСским восстановлСниСм ΠΊΠ²Π°Ρ€Ρ†ΠΈΡ‚ΠΎΠ²) Π² трихлорсилан с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ очисткой ΠΈ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΌ восстановлСниСм. Для сниТСния стоимости ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ крСмния Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒ Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ Π½Π° производство трихлорсилана ΠΏΡƒΡ‚Π΅ΠΌ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ оформлСния. РассмотрСны прСимущСства, нСдостатки ΠΈ ΠΏΡƒΡ‚ΠΈ сниТСния производствСнных Π·Π°Ρ‚Ρ€Π°Ρ‚ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ… извСстных ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² получСния трихлорсилана: взаимодСйствиСм хлористого Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° с тСхничСским ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅ΠΌ Β«direct chlorinationΒ» (DC), Π³ΠΎΠΌΠΎΠ³Π΅Π½Π½Ρ‹ΠΌ Π³ΠΈΠ΄Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ тСтрахлорсилана (конвСрсиСй), Ρ€Π΅Π°ΠΊΡ†ΠΈΠ΅ΠΉ тСтрахлорсилана ΠΈ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° с ΠΊΡ€Π΅ΠΌΠ½ΠΈΠ΅ΠΌ Β«hydro chlorination siliconΒ» (HC), Π° Ρ‚Π°ΠΊΠΆΠ΅ взаимодСйствиСм тСтрахлорсилана ΠΈ дихлорслана Π² присутствии ΠΊΠ°Ρ‚Π°Π»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π° (Ρ€Π΅Π°ΠΊΡ†ΠΈΠ΅ΠΉ пСрСраспрСдСлСния ΠΈΠ»ΠΈ Π°Π½Ρ‚ΠΈ-диспропорционирования). Π­Ρ‚ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ постоянно ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΡƒΡŽΡ‚ΡΡ. Π‘ΠΎΠ»ΡŒΡˆΡƒΡŽ Ρ€ΠΎΠ»ΡŒ ΠΈΠ³Ρ€Π°ΡŽΡ‚ каталитичСскиС процСссы Π½Π° повСрхности крСмния, ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Π½ΠΎΠ²Ρ‹Π΅ прилоТСния ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π½ΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌΠΈ элСмСнтами Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎ-тСхнологичСских схСм ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ€Π΅Ρ†ΠΈΠΊΠ»Ρ‹ ΠΈ совмСщСнныС процСссы, Π² Ρ‚ΠΎΠΌ числС рСактивная дистилляция. Π­Ρ‚ΠΎ позволяСт Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ исходный трихлорсилан, ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ ΠΈ ΡΠ½ΠΈΠΆΠ°Ρ‚ΡŒ ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈΠ·Π³ΠΎΡ‚Π°Π²Π»ΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ крСмния

    Methods of trichlorosilane synthesis for polycrystalline silicon production. Part 1: Direct synthesis

    No full text
    Novel technical solutions and ideas for increasing the yield of solar and semiconductor grade polycrystalline silicon processes have been analyzed. The predominant polycrystalline silicon technology is currently still the Siemens process including the conversion of technical grade silicon (synthesized by carbon-thermal reduction of quartzites) to trichlorosilane followed by rectification and hydrogen reduction. The cost of product silicon can be cut down by reducing the trichlorosilane synthesis costs through process and equipment improvement. Advantages, drawbacks and production cost reduction methods have been considered with respect to four common trichlorosilane synthesis processes: hydrogen chloride exposure of technical grade silicon (direct chlorination, DC), homogeneous hydration of tetrachlorosilane (conversion), tetrachlorosilane and hydrogen exposure of silicon (hydro chlorination silicon, HC), and catalyzed tetrachlorosilane and dichlorosilane reaction (redistribution of anti-disproportioning reaction). These processes remain in use and are permanently improved. Catalytic processes play an important role on silicon surface, and understanding their mechanisms can help find novel applications and obtain new results. It has been noted that indispensable components of various equipment and process designs are recycling steps and combined processes including active distillation. They provide for the most complete utilization of raw trichlorosilane, increase the process yield and cut down silicon cost

    Methods of trichlorosilane synthesis for polycrystalline silicon production. Part 2: Hydrochlorination and redistribution

    Get PDF
    Novel technical solutions and ideas for increasing the yield of solar and semiconductor grade polycrystalline silicon processes have been analyzed. The predominant polycrystalline silicon technology is currently still the Siemens process including the conversion of technical grade silicon (synthesized by carbon-thermal reduction of quartzites) to trichlorosilane followed by rectification and hydrogen reduction. The cost of product silicon can be cut down by reducing the trichlorosilane synthesis costs through process and equipment improvement. Advantages, drawbacks and production cost reduction methods have been considered with respect to four common trichlorosilane synthesis processes: hydrogen chloride exposure of technical grade silicon (direct chlorination, DC), homogeneous hydration of tetrachlorosilane (conversion), tetrachlorosilane and hydrogen exposure of silicon (hydro chlorination silicon, HC), and catalyzed tetrachlorosilane and dichlorosilane reaction (redistribution of anti-disproportioning reaction). These processes remain in use and are permanently improved. Catalytic processes play an important role on silicon surface, and understanding their mechanisms can help find novel applications and obtain new results. It has been noted that indispensable components of various equipment and process designs are recycling steps and combined processes including active distillation. They provide for the most complete utilization of raw trichlorosilane, increase the process yield and cut down silicon cost
    corecore