16 research outputs found

    Photoluminescence signature of skyrmions at \nu = 1

    Full text link
    The photoluminescence spectrum of quantized Hall states near filling factor \nu = 1 is investigated theoretically. For \nu >= 1 the spectrum consists of a right-circularly polarized (RCP) line and a left-circularly polarized (LCP) line, whose mean energy: (1) does not depend on the electron g factor for spin-1/2 quasielectrons, (2) does depend on g for charged spin-texture excitations (skyrmions). For \nu < 1 the spectrum consists of a LCP line shifted down in energy from the LCP line at \nu >= 1. The g-factor dependence of the red shift of the LCP line determines the nature of the negatively charged excitations.Comment: 11 pages, 2 PostScript figures. Replaced with version to appear in Physical Review B Rapid Communications. Minor changes, reference adde

    Optics with Quantum Hall Skyrmions

    Full text link
    A novel type of charged excitation, known as a Skyrmion, has recently been discovered in quantum Hall systems with filling factor near \nu = 1. A Skyrmion -- which can be thought of as a topological twist in the spin density of the electron gas -- has the same charge as an electron, but a much larger spin. In this review we present a detailed theoretical investigation of the optical properties of Skyrmions. Our results provide means for the optical detection of Skyrmions using photoluminescence (PL) spectroscopy. We first consider the optical properties of Skyrmions in disordered systems. A calculation of the luminescence energy reveals a special optical signature which allows us to distinguish between Skyrmions and ordinary electrons. Two experiments to measure the optical signature are proposed. We then turn to the optical properties of Skyrmions in pure systems. We show that, just like an ordinary electron, a Skyrmion may bind with a hole to form a Skyrmionic exciton. The Skyrmionic exciton can have a lower energy than the ordinary magnetoexciton. The optical signature of Skyrmions is found to be a robust feature of the PL spectrum in both disordered and pure systems.Comment: 31 pages, LaTex, 11 eps figures. ijmpb style file included. Review article submitted to Int. J. Mod. Phys.

    Ginzburg-Landau-Gor'kov Theory of Magnetic oscillations in a type-II 2-dimensional Superconductor

    Full text link
    We investigate de Haas-van Alphen (dHvA) oscillations in the mixed state of a type-II two-dimensional superconductor within a self-consistent Gor'kov perturbation scheme. Assuming that the order parameter forms a vortex lattice we can calculate the expansion coefficients exactly to any order. We have tested the results of the perturbation theory to fourth and eight order against an exact numerical solution of the corresponding Bogoliubov-de Gennes equations. The perturbation theory is found to describe the onset of superconductivity well close to the transition point Hc2H_{c2}. Contrary to earlier calculations by other authors we do not find that the perturbative scheme predicts any maximum of the dHvA-oscillations below Hc2H_{c2}. Instead we obtain a substantial damping of the magnetic oscillations in the mixed state as compared to the normal state. We have examined the effect of an oscillatory chemical potential due to particle conservation and the effect of a finite Zeeman splitting. Furthermore we have investigated the recently debated issue of a possibility of a sign change of the fundamental harmonic of the magnetic oscillations. Our theory is compared with experiment and we have found good agreement.Comment: 39 pages, 8 figures. This is a replacement of supr-con/9608004. Several sections changed or added, including a section on the effect of spin and the effect of a conserved number of particles. To be published in Phys. Rev.

    Skyrmionic excitons

    Full text link
    We investigate the properties of a Skyrmionic exciton consisting of a negatively charged Skyrmion bound to a mobile valence hole. A variational wave function is constructed which has the generalized total momentum P as a good quantum number. It is shown that the Skyrmionic exciton can have a larger binding energy than an ordinary magnetoexciton and should therefore dominate the photoluminescence spectrum in high-mobility quantum wells and heterojunctions where the electron-hole separation exceeds a critical value. The dispersion relation for the Skyrmionic exciton is discussed.Comment: 9 pages, RevTex, 2 PostScript figures. Replaced with version to appear in Phys. Rev. B Rapid Communications. Short discussion of variational state adde

    Optical properties of a two-dimensional electron gas at even-denominator filling fractions

    Full text link
    The optical properties of an electron gas in a magnetic field at filling fractions \nu = {1\over 2m} (m=1,2,3...) are investigated using the composite fermion picture. The response of the system to the presence of valence-band holes is calculated. The shapes of the emission spectra are found to differ qualitatively from the well-known electron-hole results at zero magnetic field. In particular, the asymmetry of the emission lineshape is found to be sensitive to the hole-composite fermion plane separation.Comment: 17 pages, LaTeX, 7 figures. This revised version is to appear in Physical Review

    Superfluid-spiral state of quantum ferrimagnets in magnetic field

    Full text link
    We study the phase diagram of one-dimensional quantum ferrimagnets by using a numerical exact diagonalization of a finite size system along with a field-theoretical non-linear σ\sigma model of the quantum ferrimagnets at zero temperature and its effective description in the presence of the external magnetic field in terms of the quantum XY-model. The low- and the high-field phases correspond respectively to the classical N\'eel and the fully polarized ferromagnetic states where in the intermediate magnetic field (hc1<h<hc2h_{c1} < h < h_{c2}), it is an XXZ+h model with easy plane anisotropy, which possess the spiral (superfluid) states that carry the dissipationless spin-supercurrent. We derive the critical exponents, and then will study the stability of the XY spiral state against these spin-supercurrents and the hard axis fluctuations. We will show a first order phase transition from the easy plane spiral state to a saturated ferromagnetic state occurs at h=hc2h=h_{c2} if the spin-supercurrent reaches to its critical value.Comment: 6 pages and 4 figure

    Field-induced 3- and 2-dimensional freezing in a quantum spin liquid

    Full text link
    Field-induced commensurate transverse magnetic ordering is observed in the Haldane-gap compound \nd by means of neutron diffraction. Depending on the direction of applied field, the high-field phase is shown to be either a 3-dimensional ordered N\'{e}el state or a short-range ordered state with dominant 2-dimensional spin correlations. The structure of the high-field phase is determined, and properties of the observed quantum phase transition are discussed.Comment: 4 pages 3 figure

    Integer Quantum Hall Effect with Realistic Boundary Condition : Exact Quantization and Breakdown

    Full text link
    A theory of integer quantum Hall effect(QHE) in realistic systems based on von Neumann lattice is presented. We show that the momentum representation is quite useful and that the quantum Hall regime(QHR), which is defined by the propagator in the momentum representation, is realized. In QHR, the Hall conductance is given by a topological invariant of the momentum space and is quantized exactly. The edge states do not modify the value and topological property of σxy\sigma_{xy} in QHR. We next compute distribution of current based on effective action and find a finite amount of current in the bulk and the edge, generally. Due to the Hall electric field in the bulk, breakdown of the QHE occurs. The critical electric field of the breakdown is proportional to B3/2B^{3/2} and the proportional constant has no dependence on Landau levels in our theory, in agreement with the recent experiments.Comment: 48 pages, figures not included, some additions and revision

    Metals in high magnetic field: a new universality class of Fermi liquids

    Full text link
    Parquet equations, describing the competition between superconducting and density-wave instabilities, are solved for a three-dimensional isotropic metal in a high magnetic field when only the lowest Landau level is filled. In the case of a repulsive interaction between electrons, a phase transition to the density-wave state is found at finite temperature. In the opposite case of attractive interaction, no phase transition is found. With decreasing temperature TT, the effective vertex of interaction between electrons renormalizes toward a one-dimensional limit in a self-similar way with the characteristic length (transverse to the magnetic field) decreasing as ln1/6(ωc/T)\ln^{-1/6}(\omega_c/T) (ωc\omega_c is a cutoff). Correlation functions have new forms, previously unknown for conventional one-dimensional or three-dimensional Fermi-liquids.Comment: 13 pages + 4 figures (included

    Quasiparticles of d-wave superconductors in finite magnetic fields

    Full text link
    We study quasiparticles of d-wave superconductors in the vortex lattice by self-consistently solving the Bogoliubov-de Gennes equations. It is found for a pure dx2y2d_{x^2-y^2} state that: (i) low-energy quasiparticle bands in the magnetic Brillouin zone have rather large dispersion even in low magnetic fields, indicating absense of bound states for an isolated vortex; (ii) in finite fields with kFξ0k_F \xi_0 small, the calculated tunneling conductance at the vortex core shows a double-peak structure near zero bias, as qualitatively consistent with the STM experiment by Maggio-Aprile et al. [Phys. Rev. Lett. {\bf 75} (1995) 2754]. We also find that mixing of a dxyd_{xy}- or an s-wave component, if any, develops gradually without transitions as the field is increased, having little effect on the tunneling spectra.Comment: 4 pages, 4 figures, LaTe
    corecore