666 research outputs found

    Parabolic Metamaterials and Dirac Bridges

    Get PDF
    A new class of multi-scale structures, referred to as `parabolic metamaterials' is introduced and studied in this paper. For an elastic two-dimensional triangular lattice, we identify dynamic regimes, which corresponds to so-called `Dirac Bridges' on the dispersion surfaces. Such regimes lead to a highly localised and focussed unidirectional beam when the lattice is excited. We also show that the flexural rigidities of elastic ligaments are essential in establishing the `parabolic metamaterial' regimes.Comment: 14 pages, 4 figure

    Propagation and filtering of elastic and electromagnetic waves in piezoelectric composite structures

    Get PDF
    In this article we discuss the modelling of elastic and electromagnetic wave propagation through one- and two-dimensional structured piezoelectric solids. Dispersion and the effect of piezoelectricity on the group velocity and positions of stop bands are studied in detail. We will also analyze the reflection and transmission associated with the problem of scattering of an elastic wave by a heterogeneous piezoelectric stack. Special attention is given to the occurrence of transmission resonances in finite stacks and their dependence on a piezoelectric effect. A 2D doubly-periodic piezoelectric checkerboard structure is subsequently introduced, for which the dispersion surfaces for Bloch waves have been constructed and analysed, with the emphasis on the dynamic anisotropy and special features of standing waves within the piezoelectric structure.Comment: 24 pages, 18 figures, 3 tables. Preprint version of a research article, accepted for publication in "Mathematical Methods in the Applied Science (2016)

    Edge waves and localisation in lattices containing tilted resonators

    Full text link
    The paper presents the study of waves in a structured geometrically chiral solid. A special attention is given to the analysis of the Bloch-Floquet waves in a doubly periodic high-contrast lattice containing tilted resonators. Dirac-like dispersion of Bloch waves in the structure is identified, studied and applied to wave-guiding and wave-defect interaction problems. The work is extended to the transmission problems and models of fracture, where localisation and edge waves occur. The theoretical derivations are accompanied with numerical simulations and illustrations

    Active cloaking of finite defects for flexural waves in elastic plates

    Get PDF
    We present a new method to create an active cloak for a rigid inclusion in a thin plate, and analyse flexural waves within such a plate governed by the Kirchhoff plate equation. We consider scattering of both a plane wave and a cylindrical wave by a single clamped inclusion of circular shape. In order to cloak the inclusion, we place control sources at small distances from the scatterer and choose their intensities to eliminate propagating orders of the scattered wave, thus reconstructing the respective incident wave. We then vary the number and position of the control sources to obtain the most effective configuration for cloaking the circular inclusion. Finally, we successfully cloak an arbitrarily shaped scatterer in a thin plate by deriving a semi-analytical, asymptotic algorithm.Comment: 19 pages, 14 figures, 1 tabl
    • …
    corecore