90 research outputs found

    Growth of Sr1-xCaxRuO3 thin films by metalorganic aerosol deposition

    Get PDF
    We report the growth of thin films of Sr1-xCaxRuO3 on SrTiO3 and MgO substrates by metalorganic aerosol deposition. The structure and microstructure is characterized by X-ray diffraction and room-temperature scanning tunnelling microscopy (STM), respectively. STM indicates in-plane epitaxy and a small surface roughness for films on SrTiO3. The high-quality of the films is supported by large residual resistivity ratios up to 29.Comment: 4 Pages, 2 Figures, submitted to Proceedings of ICM 2009 (Karlsruhe

    Negative refraction in natural ferromagnetic metals

    Full text link
    It is generally believed that Veselago's criterion for negative refraction cannot be fulfilled in natural materials. However, considering imaginary parts of the permittivity ({\epsilon}) and permeability ({\mu}) and for metals at not too high frequencies the general condition for negative refraction becomes extremely simple: Re({\mu}) Re(n) < 0. Here we demonstrate experimentally that in such natural metals as pure Co and FeCo alloy the negative values of the refractive index are achieved close to the frequency of the ferromagnetic resonance. Large values of the negative refraction can be obtained at room temperature and they can easily be tuned in moderate magnetic fields

    In situ monitoring of atomic layer epitaxy via optical ellipsometry

    Get PDF
    We report on the use of time-resolved optical ellipsometry to monitor the deposition of single atomic layers with subatomic sensitivity. Ruddlesden–Popper thin films of SrO(SrTiO3) n=4 were grown by means of metalorganic aerosol deposition in the atomic layer epitaxy mode on SrTiO3(1 0 0), LSAT(1 0 0) and DyScO3(1 1 0) substrates. The measured time dependences of ellipsometric angles, Δ(t) and Ψ(t), were described by using a simple optical model, considering the sequence of atomic layers SrO and TiO2 with corresponding bulk refractive indices. As a result, valuable online information on the atomic layer epitaxy process was obtained. Ex situ characterization techniques, i.e. transmission electron microscopy, x-ray diffraction and x-ray reflectometry verify the crystal structure and confirm the predictions of optical ellipsometry

    Low-energy electronic properties of clean CaRuO3_3: elusive Landau quasiparticles

    Full text link
    We have prepared high-quality epitaxial thin films of CaRuO3_3 with residual resistivity ratios up to 55. Shubnikov-de Haas oscillations in the magnetoresistance and a T2T^2 temperature dependence in the electrical resistivity only below 1.5 K, whose coefficient is substantially suppressed in large magnetic fields, establish CaRuO3_3 as a Fermi liquid (FL) with anomalously low coherence scale. Non-Fermi liquid (NFL) T3/2T^{3/2} dependence is found between 2 and 25 K. The high sample quality allows access to the intrinsic electronic properties via THz spectroscopy. For frequencies below 0.6 THz, the conductivity is Drude-like and can be modeled by FL concepts, while for higher frequencies non-Drude behavior, inconsistent with FL predictions, is found. This establishes CaRuO3_3 as a prime example of optical NFL behavior in the THz range.Comment: 12 pages, 21 figures including supplemental materia

    Strain-Driven Structure-Ferroelectricity Relationship in hexagonal TbMnO3_3 Films

    Full text link
    Thin films and heterostructures of hexagonal manganites as promising multiferroic materials have attracted a considerable interest recently. We report structural transformations of high quality epitaxial h-TMO/YSZ(111) films, analyzed by means of various characterization techniques. A phase transition from P63mc to P63mcm structure at TC~800 K was observed by temperature dependent Raman spectroscopy and optical ellipsometry. The latter probing directly electronic system, indicates its modification at the structural phase transition likely due to charge transfer from oxygen to Mn. In situ transmission electron microscopy (TEM) of the lamella samples displayed an irreversible P63mc-P63mcm transformation and vanishing of ferroelectric domains already at 410 K. After the temperature cycling (300K-1300K-300K) the room temperature TEM of h-TMO films revealed an inhomogeneous microstructure, containing ferroelectric and paraelectric nanodomains with P63mc and P63mcm structure, respectively. We point out a strong influence of stress relaxation, induced by temperature and by constrained sample geometry onto the structure and ferroelectricity in strain-stabilized h-TMO thin films.Comment: 24 pages, 10 figure
    • …
    corecore