55 research outputs found

    Deuterium retention and erosion in liquid Sn samples exposed to D2 and Ar plasmas in GyM device

    Get PDF
    The use of tin (Sn) as a liquid metal for plasma facing components has been recently proposed as a solution to the high heat load issue on the divertor target plates in nuclear fusion reactors. Due to its low vapor pressure, low reactivity with hydrogen and good resilience to neutron impact, tin is a good candidate as plasma facing component. However its high atomic number poses concerns about plasma contamination.In this paper two fundamental aspects have been investigated: deuterium retention and erosion fluxes from the Sn surface towards the plasma. The samples were exposed to plasma inside the linear machine GyM in magnetic cusp configuration. This setup permits to expose free liquid specimens without the need for the Capillary Porous System. Moreover it permits to lower the magnetic field in order to increase Sn Larmor radius and consequently limit Sn re-deposition in erosion experiments.Ex-situ analyses by ion beam diagnostics on solid samples exposed to deuterium plasma have proved that the amount of retained atomic deuterium is very low, approximately 0.18 at% estimated by Nuclear Reaction Analysis and 0.25 at% estimated by Elastic Recoil Detection Analysis.In the framework of erosion studies, the spectroscopic parameter S/XB was evaluated in Ar plasma for the SnI line at 380.1 nm by Optical Emission Spectroscopy and mass loss measurements in the 5–11 eV Te range, at a density ne ∼ 1.5 × 1011 cm−3. An average value of 150 ± 23 was obtained. Keywords: Liquid metals, Deuterium retention, Erosion, Double-cusp magnetic configuration, Ion beam diagnostics, S/XB spectroscopic paramete

    Overview of the FTU results

    Get PDF
    Since the 2018 IAEA FEC Conference, FTU operations have been devoted to several experiments covering a large range of topics, from the investigation of the behaviour of a liquid tin limiter to the runaway electrons mitigation and control and to the stabilization of tearing modes by electron cyclotron heating and by pellet injection. Other experiments have involved the spectroscopy of heavy metal ions, the electron density peaking in helium doped plasmas, the electron cyclotron assisted start-up and the electron temperature measurements in high temperature plasmas. The effectiveness of the laser induced breakdown spectroscopy system has been demonstrated and the new capabilities of the runaway electron imaging spectrometry system for in-flight runaways studies have been explored. Finally, a high resolution saddle coil array for MHD analysis and UV and SXR diamond detectors have been successfully tested on different plasma scenarios

    Overview of the FTU results

    Get PDF
    Since the 2016 IAEA Fusion Energy Conference, FTU operations have been mainly devoted to experiments on runaway electrons and investigations into a tin liquid limiter; other experiments have involved studies of elongated plasmas and dust. The tearing mode onset in the high density regime has been studied by means of the linear resistive code MARS, and the highly collisional regimes have been investigated. New diagnostics, such as a runaway electron imaging spectroscopy system for in-flight runaway studies and a triple Cherenkov probe for the measurement of escaping electrons, have been successfully installed and tested, and new capabilities of the collective Thomson scattering and the laser induced breakdown spectroscopy diagnostics have been explored

    Note di progetto relative all'impianto di distribuzione di azoto liquido per il sistema ECRH su FTU

    No full text

    Note di progetto per il rivelatore d'arco della linea di trasmissione ECRH su FTU

    No full text

    Retention of nanocrystalline WNx layers exposed to high-fluence deuterium plasmas

    No full text
    For high-power plasma operation regimes in tokamak fusion devices the power load onto W divertor plates must be kept below acceptable limits for materials. N-2 gas is likely to be used to reduce the power load. However, because of erosion phenomena, WNx compounds will be produced in the divertor and tritium retention is issue of concern. We report recent experiments using the GYM linear plasma device that examined D retention in WNx compounds exposed to D plasma at divertor relevant fluence (similar to 10(24) m(-2)). It is shown that WNx compounds with different nitrogen concentration have very similar D retention, lower than the case of the tungsten without nitrogen and in any case lower than the acceptable limit for operation in ITER

    Procedure relative al raffreddamento e al mantenimento alla temperatura dell'elio liquido dei magneti superconduttori del sistema ECRH su FTU

    No full text
    Printed from http://www.ifp.cnr.it target=NewWindow>www.ifp.cnr.it (March 2005)Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 , Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
    • …
    corecore