5,005 research outputs found

    Preimage problems for deterministic finite automata

    Full text link
    Given a subset of states SS of a deterministic finite automaton and a word ww, the preimage is the subset of all states mapped to a state in SS by the action of ww. We study three natural problems concerning words giving certain preimages. The first problem is whether, for a given subset, there exists a word \emph{extending} the subset (giving a larger preimage). The second problem is whether there exists a \emph{totally extending} word (giving the whole set of states as a preimage)---equivalently, whether there exists an \emph{avoiding} word for the complementary subset. The third problem is whether there exists a \emph{resizing} word. We also consider variants where the length of the word is upper bounded, where the size of the given subset is restricted, and where the automaton is strongly connected, synchronizing, or binary. We conclude with a summary of the complexities in all combinations of the cases

    Magnetically Arrested Disk: An Energetically Efficient Accretion Flow

    Full text link
    We consider an accretion flow model originally proposed by Bisnovatyi-Kogan & Ruzmaikin (1974), which has been confirmed in recent 3D MHD simulations. In the model, the accreting gas drags in a strong poloidal magnetic field to the center such that the accumulated field disrupts the axisymmetric accretion flow at a relatively large radius. Inside the disruption radius, the gas accretes as discrete blobs or streams with a velocity much less than the free-fall velocity. Almost the entire rest mass energy of the gas is released as heat, radiation and mechanical/magnetic energy. Even for a non-rotating black hole, the efficiency of converting mass to energy is of order 50% or higher. The model is thus a practical analog of an idealized engine proposed by Geroch and Bekenstein.Comment: 4 pages, 2 figure, new refs added, in print in PAS

    Accretion Disks Phase Transitions: 2-D or not 2-D?

    Get PDF
    We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.Comment: 4 pages, 2 figure

    Self-Similar Accretion Flows with Convection

    Full text link
    We consider height-integrated equations of an advection-dominated accretion flow (ADAF), assuming that there is no mass outflow. We include convection through a mixing length formalism. We seek self-similar solutions in which the rotational velocity and sound speed scale as R^{-1/2}, where R is the radius, and consider two limiting prescriptions for the transport of angular momentum by convection. In one limit, the transport occurs down the angular velocity gradient, so convection moves angular momentum outward. In the other, the transport is down the specific angular momentum gradient, so convection moves angular momentum inward. We also consider general prescriptions which lie in between the two limits. When convection moves angular momentum outward, we recover the usual self-similar solution for ADAFs in which the mass density scales as rho ~ R^{-3/2}. When convection moves angular momentum inward, the result depends on the viscosity coefficient alpha. If alpha>alpha_{crit1} ~ 0.05, we once again find the standard ADAF solution. For alpha<alpha_{crit}, however, we find a non-accreting solution in which rho ~ R^{-1/2}. We refer to this as a "convective envelope" solution or a "convection-dominated accretion flow". Two-dimensional numerical simulations of ADAFs with values of alpha<0.03 have been reported by several authors. The simulated ADAFs exhibit convection. By virtue of their axisymmetry, convection in these simulations moves angular momentum inward, as we confirm by computing the Reynolds stress. The simulations give rho ~ R^{-1/2}, in good agreement with the convective envelope solution. The R^{-1/2} density profile is not a consequence of mass outflow.Comment: 22 pages, 4 figures, final version accepted for publication in ApJ, a new appendix was added and 3 figs were modifie
    corecore