1,100 research outputs found

    Fundamentals of crude oil and natural gas processing

    Get PDF
    This training manual includes term project methodical guide on the course "Fundamentals of crude oil and natural gas processing" in English. The main purpose of the training manual is to provide students the theoretical and methodological assistance at performance the term project on the course "Fundamentals of crude oil and natural gas processing". The manual contains the initial data and reference material needed to perform the calculations. The manual is intended for the students of speciality 6.050304 "Oil and gas production" in English

    Spinning-Down of Moving Magnetars in the Propeller Regime

    Get PDF
    We use axisymmetric magnetohydrodynamic simulations to investigate the spinning-down of magnetars rotating in the propeller regime and moving supersonically through the interstellar medium. The simulations indicate that magnetars spin-down rapidly due to this interaction, faster than for the case of a non-moving star. From many simulation runs we have derived an approximate scaling laws for the angular momentum loss rate, \dot{L} \propto \~\eta_m^{0.3}\mu^{0.6}\rho^{0.8}{\cal M}^{-0.4} \Omega_*^{1.5}, where \rho is the density of the interstellar medium, \cal M is Mach number, \mu is the star's magnetic moment, \Omega_* is its angular velocity, and \eta_m is magnetic diffusivity. A magnetar with a surface magnetic field of 10^{13} - 10^{15} G is found to spin-down to a period P > 10^5-10^6 s in \sim 10^4 - 10^5 years. There is however uncertainty about the value of the magnetic diffusivity so that the time-scale may be longer. We discuss this model in respect of Soft Gamma Repeaters (SGRs) and the isolated neutron star candidate RXJ1856.5-3754.Comment: 10 pages, 4 figures, accepted by MNRAS. See version with better resolution figures and animation at http://astrosun2.astro.cornell.edu/us-rus/propeller.ht

    Gamma-ray Flares and VLBI Outbursts of Blazars

    Full text link
    A model is developed for the time dependent electromagnetic - radio to gamma-ray - emission of active galactic nuclei, specifically, the blazars, based on the acceleration and creation of leptons at a propagating discontinuity or {\it front} of a Poynting flux jet. The front corresponds to a discrete relativistic jet component as observed with very-long-baseline-interferometry (VLBI). Equations are derived for the number, momentum, and energy of particles in the front taking into account synchrotron, synchrotron-self-Compton (SSC), and inverse-Compton processes as well as photon-photon pair production. The apparent synchrotron, SSC, and inverse-Compton luminosities as functions of time are determined. Predictions of the model are compared with observations in the gamma, optical and radio bands. The delay between the high-energy gamma-ray flare and the onset of the radio is explained by self-absorption and/or free-free absorption by external plasma. Two types of gamma-ray flares are predicted depending on pair creation in the front.Comment: 11 pages, submitted to ApJ. 10 figures can be obtained from R. Lovelace by sending postal address to [email protected]

    Boundary Between Stable and Unstable Regimes of Accretion

    Full text link
    We investigated the boundary between stable and unstable regimes of accretion and its dependence on different parameters. Simulations were performed using a "cubed sphere" code with high grid resolution (244 grid points in the azimuthal direction), which is twice as high as that used in our earlier studies. We chose a very low viscosity value, with alpha-parameter alpha=0.02. We observed from the simulations that the boundary strongly depends on the ratio between magnetospheric radius r_m (where the magnetic stress in the magnetosphere matches the matter stress in the disk) and corotation radius r_cor (where the Keplerian velocity in the disk is equal to the angular velocity of the star). For a small misalignment angle of the dipole field, Theta=5 degrees, accretion is unstable if r_cor/r_m>1.35, and is stable otherwise. In cases of a larger misalignment angle of the dipole, Theta=20 degrees, instability occurs at slightly larger values, r_cor/r_m>1.41.Comment: 4 pages, 4 figures, conference proceedings: "Physics at the Magnetospheric Boundary", Geneva, Switzerland, 25-28 June, 201

    Jets and Disk-Winds from Pulsar Magnetospheres

    Get PDF
    We discuss axisymmetric force-free pulsar magnetospheres with magnetically collimated jets and a disk-wind obtained by numerical solution of the pulsar equation. This solution represents an alternative to the quasi-spherical wind solutions where a major part of the current flow is in a current sheet which is unstable to magnetic field annihilation.Comment: 6 figures, accepted for publication in the Ap
    corecore