107 research outputs found

    Analytical Form of the Deuteron Wave Function Calculated within the Dispersion Approach

    Get PDF
    We present a convenient analytical parametrization of the deuteron wave function calculated within dispersion approach as a discrete superposition of Yukawa-type functions, in both configuration and momentum spaces.Comment: 3 pages, 2 figure; several minor corrections adde

    Deuteron tensor polarization component T_20(Q^2) as a crucial test for deuteron wave functions

    Get PDF
    The deuteron tensor polarization component T_20(Q^2) is calculated by relativistic Hamiltonian dynamics approach. It is shown that in the range of momentum transfers available in to-day experiments, relativistic effects, meson exchange currents and the choice of nucleon electromagnetic form factors almost do not influence the value of T_20(Q^2). At the same time, this value depends strongly on the actual form of the deuteron wave function, that is on the model of NN-interaction in deuteron. So the existing data for T_20(Q^2) provide a crucial test for deuteron wave functions.Comment: 11 pages, 3 figure

    Form Factors of Composite Systems by Generalized Wigner-Eckart Theorem for Poincar\'e group

    Full text link
    The relativistic approach to electroweak properties of two-particle composite systems developed previously is generalized here to the case of nonzero spin. This approach is based on the instant form of relativistic Hamiltonian dynamics. A special mathematical technique is used for the parametrization of matrix elements of electroweak current operators in terms of form factors. The parametrization is a realization of the generalized Wigner--Eckart theorem on the Poincar\'e group, form factors are corresponding reduced matrix elements and they have the sense of distributions (generalized functions). The electroweak current matrix element satisfies the relativistic covariance conditions and in the case of electromagnetic current it also automatically satisfies the conservation law.Comment: Submitted to Theor. Math. Phy

    Generalized concentration dependence of self-diffusion coefficients in poly(allylcarbosilane) dendrimer solutions

    Get PDF
    Self-diffusion of three high generations (the fifth, sixth, and seventh) of poly(allylcarbosilane) dendrimer in solutions with deuterated chloroform has been studied over a wide range of macromolecular concentrations (φ). Diffusivity has been measured by NMR with a pulsed gradient of the magnetic field. It is shown that concentration dependences of the dendrimer self-diffusion coefficients (D) can be reduced to the generalized concentration dependence. Over the range of volume concentrations from 0.01 up to 0.55, the curve of the generalized dependence of D for dendrimers coincides with the analogous dependence for globular protein in aqueous solutions. Analogous to the universal concentration dependence of D for linear polymers in solvent, the generalized concentration dependence of dendrimers tends to the asymptote D′(φ)/D0 ∞ φ0 = 1 in the limit of extremely dilute solutions and to the asymptote D(φ)/D0 ∞ φ-3 in the range of concentrated solutions 0.3 < φ < 0.55. Here, D0 - limφ-0 D(φ) and D(φ) are the self-diffusion coefficients of dendrimer in an extremely dilute solution and in a solution with macromolecular concentration φ, respectively. D′(φ) = D(φ)/L(φ), where L(φ) is a normalizing function, taking into account the change of the local mobility of dendritic branches as the macromolecular concentration increases; the L(φ) functions have been experimentally extracted from the concentration dependence of the longitudinal relaxation times for the dendrimers in solutions studied

    Self-Diffusion and Nuclear Magnetic Relaxation of Dendritic Macromolecules in Solutions

    Get PDF
    The self-diffusion and nuclear magnetic relaxation of poly(butylcarbosilane) and poly(allylcarbosilane) dendrimers dissolved in deuterated chloroform and poly(amidoamine) dendrimers with hydroxyl surface groups in solutions with methanol have been studied. The diffusion rates (D) have been measured by the pulsed-field-gradient nuclear magnetic resonance. It is shown that experimental concentration dependences D(φ) obtained for macromolecules in the dendrimer-solvent systems studied can be reduced to a unified view, and thus, the generalized concentration dependence of the normalized diffusion rates of dendrimers can be obtained. In the macromolecular volume concentration range from 0.01 up to 0.55, the generalized dependence of the normalized diffusion rates for dendrimers coincides with the analogous dependence for globular proteins in aqueous solutions; the last result suggests that self-diffusion features of dendrimers and globular proteins are in general similar. It is also shown that the experimental data obtained permit one to characterize the changes of the own monomer density of dendrimers depending on their molecular weight and, as a consequence, to make a conclusion about the swelling of dendritic macromolecules in the solutions studied

    Synthesis of Monochlorosilyl Derivatives of Dialkyloligothiophenes for Self-Assembling Mono layer Field-Effect Transistors

    Get PDF
    Unsymmetrical dimethylchlorosilyl-substituted α,α'-dialkylquater-, quinque-, and sexithiophenes were designed and successfully synthesized by a combination of Kumada and Suzuki cross-coupling reactions followed by hydrosilylation. Optimization possibilities of the hydrosilylation of low-soluble linear oligothiophenes by dimethylchlorosilane as well as the nonreactive byproducts formed are described. The molecular structures of the obtained dimethylchlorosilyl-functionalized oligothiophenes were proven by NMR and DCI MS techniques. These compounds were found to be stable and reactive enough, even in the presence of the nonreactive byproducts, to form semiconducting monolayers on dielectric hydroxylated SiO2 surfaces by self-assembly from solution. The semiconducting properties of these oligothiophene SAMs were as good as those of bulk oligothiophenes. This allowed the production of stable, even under ambient conditions, SAMFETs with a mobility of up to 0.04 cm2/(V s) and an on/off ratio up to 1 × 10^8.

    Approaches to the Functionalization of Organosilicon Dendrones Based on Limonene

    No full text
    Previously, we reported the synthesis of carbosilane and carbosilane-siloxane dendrons of various generations based limonene, a natural terpene. Limonene that contains two double bonds, namely cyclohexene and isoprenyl ones, was shown to undergo regioselective hydrosilylation exclusively at its isoprenyl double bond. This finding was used to prepare carbosilane dendrons (CDs) with a limonene moiety at the focal point. In this study, we present variants for the functionalization of the cyclohexene double bond by an epoxidation reaction in order to use the resulting dendrons for the preparation of various macromolecular objects, including Janus dendrimers (JDs), dendronized polymers, and macroinitiators. Moreover, it was shown that dendrons with peripheral azide functions could be obtained. These methods offer both the possibilities of the further growth of branches and the addition of polymers with a different nature by the azide&ndash;alkyne cycloaddition reaction
    • …
    corecore