8 research outputs found

    Dynamic-stochastic modeling of snow cover formation on the European territory of Russia

    Get PDF
    A dynamic-stochastic model, which combines a deterministic model of snow cover formation with a stochastic weather generator, has been developed. The deterministic snow model describes temporal change of the snow depth, content of ice and liquid water, snow density, snowmelt, sublimation, re-freezing of melt water, and snow metamorphism. The model has been calibrated and validated against the long-term data of snow measurements over the territory of the European Russia. The model showed good performance in simulating time series of the snow water equivalent and snow depth. The developed weather generator (NEsted Weather Generator, NewGen) includes nested generators of annual, monthly and daily time series of weather variables (namely, precipitation, air temperature, and air humidity). The parameters of the NewGen have been adjusted through calibration against the long-term meteorological data in the European Russia. A disaggregation procedure has been proposed for transforming parameters of the annual weather generator into the parameters of the monthly one and, subsequently, into the parameters of the daily generator. Multi-year time series of the simulated daily weather variables have been used as an input to the snow model. Probability properties of the snow cover, such as snow water equivalent and snow depth for return periods of 25 and 100 years, have been estimated against the observed data, showing good correlation coefficients. The described model has been applied to different landscapes of European Russia, from steppe to taiga regions, to show the robustness of the proposed technique

    Π”ΠΈΠ½Π°ΠΌΠΈΠΊΠΎ-стохастичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ формирования снСТного ΠΏΠΎΠΊΡ€ΠΎΠ²Π° Π½Π° ЕвропСйской Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ России

    No full text
    A dynamic-stochastic model, which combines a deterministic model of snow cover formation with a stochastic weather generator, has been developed. The deterministic snow model describes temporal change of the snow depth, content of ice and liquid water, snow density, snowmelt, sublimation, re-freezing of melt water, and snow metamorphism. The model has been calibrated and validated against the long-term data of snow measurements over the territory of the European Russia. The model showed good performance in simulating time series of the snow water equivalent and snow depth. The developed weather generator (NEsted Weather Generator, NewGen) includes nested generators of annual, monthly and daily time series of weather variables (namely, precipitation, air temperature, and air humidity). The parameters of the NewGen have been adjusted through calibration against the long-term meteorological data in the European Russia. A disaggregation procedure has been proposed for transforming parameters of the annual weather generator into the parameters of the monthly one and, subsequently, into the parameters of the daily generator. Multi-year time series of the simulated daily weather variables have been used as an input to the snow model. Probability properties of the snow cover, such as snow water equivalent and snow depth for return periods of 25 and 100 years, have been estimated against the observed data, showing good correlation coefficients. The described model has been applied to different landscapes of European Russia, from steppe to taiga regions, to show the robustness of the proposed technique.Β Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΎ-стохастичСская модСль, ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ – дСтСрминистичСская модСль формирования снСТного ΠΏΠΎΠΊΡ€ΠΎΠ²Π° ΠΈ стохастичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ врСмСнны́х рядов Π²Ρ…ΠΎΠ΄Π½Ρ‹Ρ… мСтСорологичСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ (стохастичСский Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ ΠΏΠΎΠ³ΠΎΠ΄Ρ‹). ДСтСрминистичСская модСль формирования снСТного ΠΏΠΎΠΊΡ€ΠΎΠ²Π° описываСт измСнСния Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ снСга, содСрТания льда ΠΈ Ρ‚Π°Π»ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ Π² Π½Ρ‘ΠΌ, процСссы снСготаяния, сублимации ΠΈ замСрзания Ρ‚Π°Π»ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ Π² Ρ‚ΠΎΠ»Ρ‰Π΅ снСга. ΠšΠ°Π»ΠΈΠ±Ρ€ΠΎΠ²ΠΊΠ° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΠΎ Π΄Π°Π½Π½Ρ‹ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… наблюдСний Π·Π° снСТным ΠΏΠΎΠΊΡ€ΠΎΠ²ΠΎΠΌ Π½Π° 36 мСтСорологичСских станциях Π½Π° ЕвропСйской Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ России ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»Π° ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π°Π΄Π΅ΠΊΠ²Π°Ρ‚Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎ Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ запасов Π²ΠΎΠ΄Ρ‹ Π² снСТном ΠΏΠΎΠΊΡ€ΠΎΠ²Π΅ ΠΈ Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ снСга. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ стохастичСский Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€ ΠΏΠΎΠ³ΠΎΠ΄Ρ‹ (NEsted Weather Generator, NEWGen) для модСлирования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… врСмСнны́х рядов срСднСсуточных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π²ΠΎΠ·Π΄ΡƒΡ…Π°, осадков ΠΈ влаТности Π²ΠΎΠ·Π΄ΡƒΡ…Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Π²Ρ…ΠΎΠ΄Π½Ρ‹Π΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ дСтСрминистичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ. Для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠΈ стохастичСского Π³Π΅Π½Π΅Ρ€Π°Ρ‚ΠΎΡ€Π° ΠΏΠΎΠ³ΠΎΠ΄Ρ‹ использовали Π΄Π°Π½Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠ»Π΅Ρ‚Π½ΠΈΡ… наблюдСний Π½Π° мСтСорологичСских станциях ЕвропСйской Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ России. ВысячСлСтниС ряды мСтСорологичСских Π²Π΅Π»ΠΈΡ‡ΠΈΠ½, сгСнСрированныС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ, задавались Π² качСствС Β«Π²Ρ…ΠΎΠ΄ΠΎΠ²Β» Π² модСль формирования снСТного ΠΏΠΎΠΊΡ€ΠΎΠ²Π°, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Π»ΠΈΡΡŒ ряды Ρ‚ΠΎΠ»Ρ‰ΠΈΠ½Ρ‹ снСга ΠΈ снСгозапасов ΠΈ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈΡΡŒ ΠΈΡ… вСроятностныС характСристики. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ соотвСтствиС статистичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Ρ… ΠΏΠΎ фактичСским ΠΈ рассчитанным рядам характСристик снСТного ΠΏΠΎΠΊΡ€ΠΎΠ²Π°

    Ensemble seasonal forecast of extreme water inflow into a large reservoir

    No full text
    An approach to seasonal ensemble forecast of unregulated water inflow into a large reservoir was developed. The approach is founded on a physically-based semi-distributed hydrological model ECOMAG driven by Monte-Carlo generated ensembles of weather scenarios for a specified lead-time of the forecast (3 months ahead in this study). Case study was carried out for the Cheboksary reservoir (catchment area is 374 000 km2) located on the middle Volga River. Initial watershed conditions on the forecast date (1 March for spring freshet and 1 June for summer low-water period) were simulated by the hydrological model forced by daily meteorological observations several months prior to the forecast date. A spatially distributed stochastic weather generator was used to produce time-series of daily weather scenarios for the forecast lead-time. Ensemble of daily water inflow into the reservoir was obtained by driving the ECOMAG model with the generated weather time-series. The proposed ensemble forecast technique was verified on the basis of the hindcast simulations for 29 spring and summer seasons beginning from 1982 (the year of the reservoir filling to capacity) to 2010. The verification criteria were used in order to evaluate an ability of the proposed technique to forecast freshet/low-water events of the pre-assigned severity categories
    corecore