10,654 research outputs found
An overview of tea research in Tanzania - with special reference to the Southern Highlands.
The history of tea development in Tanzania from the early part of this century
to the present is summarised. Average yields of made tea from well managed
estates in the Mufindi district have increased from around 600 kg ha-1 in the
late 1950s to 3000 kg ha-1 at the present time: by comparison, yields from
smallholder farms have remained much lower, averaging only 400-500 kg ha-1.
There have been a large number of technical, economic and other changes over the
last 30 to 40 years. The removal of shade trees, the use of herbicides, the
application of NPK compound fertilisers, the introduction of irrigation (on some
estates) and changes in harvesting policy have all contributed to the increases
in yield. Financial and infrastructural problems have contributed to the low
yields from many smallholders and others, and have limited the uptake of new
technology. The contribution of research is reviewed, from the start of the Tea
Research Institute of East Africa in Kenya in 1951, through to the development
of the Marikitanda Tea Research Centre in Amani in 1967; the Ngwazi Tea Research
Unit in Mufindi (1967 to 1970, and from 1986), and lastly the Kifyulilo Tea
Research Station, also in Mufindi in 1986. The yield potential of well
fertilized and irrigated clonal tea, grown at an altitude of 1800 m, is around
6000 kg ha-1. This potential is reduced by drought, lack of fertilizer, bush
vacancies and inefficient harvesting practices. The corresponding potential
yields at high (2200 m) and low (1200 m) altitude sites range from 3000-3500 kg
ha-1 up to 9000-10000 kg ha-1 and are largely a function of temperature. The
opportunities for increasing yields of existing tea, smallholder and estate, are
enormous. Tea production in the Southern Highlands of Tanzania is about to
expand rapidly. Good, appropriate research is needed to sustain this development
over the long term, and suggestions on how best this is done in order to assist
the large scale producers as well as the smallholders, are discussed
The water relations and irrigation requirements of lychee (litchi chinensis sonn.): a review
The results of research into the water relations and irrigation requirements of lychee are collated and reviewed. The stages of plant development are summarised, with an emphasis on factors influencing the flowering process. This is followed by reviews of plant water relations, water requirements, water productivity and, finally, irrigation systems. The lychee tree is native to the rainforests of southern China and northern Vietnam, and the main centres of production remain close to this area. In contrast, much of the research on the water relations of this crop has been conducted in South Africa, Australia and Israel where the tree is relatively new. Vegetative growth occurs in a series of flushes. Terminal inflorescences are borne on current shoot growth under cool (<15 °C), dry conditions. Trees generally do not produce fruit in the tropics at altitudes below 300 m. Poor and erratic flowering results in low and irregular fruit yields. Drought can enhance flowering in locations with dry winters. Roots can extract water from depths greater than 2 m. Diurnal trends in stomatal conductance closely match those of leaf water status. Both variables mirror changes in the saturation deficit of the air. Very little research on crop water requirements has been reported. Crop responses to irrigation are complex. In areas with low rainfall after harvest, a moderate water deficit before floral initiation can increase flowering and yield. In contrast, fruit set and yield can be reduced by a severe water deficit after flowering, and the risk of fruit splitting increased. Water productivity has not been quantified. Supplementary irrigation in South-east Asia is limited by topography and competition for water from the summer rice crop, but irrigation is practised in Israel, South Africa, Australia and some other places. Research is needed to determine the benefits of irrigation in different growing areas. Copyright © Cambridge University Press 2013
Stability criterion for self-similar solutions with a scalar field and those with a stiff fluid in general relativity
A stability criterion is derived in general relativity for self-similar
solutions with a scalar field and those with a stiff fluid, which is a perfect
fluid with the equation of state . A wide class of self-similar
solutions turn out to be unstable against kink mode perturbation. According to
the criterion, the Evans-Coleman stiff-fluid solution is unstable and cannot be
a critical solution for the spherical collapse of a stiff fluid if we allow
sufficiently small discontinuity in the density gradient field in the initial
data sets. The self-similar scalar-field solution, which was recently found
numerically by Brady {\it et al.} (2002 {\it Class. Quantum. Grav.} {\bf 19}
6359), is also unstable. Both the flat Friedmann universe with a scalar field
and that with a stiff fluid suffer from kink instability at the particle
horizon scale.Comment: 15 pages, accepted for publication in Classical and Quantum Gravity,
typos correcte
A comparison of the responses of mature and young clonal tea to drought.
To assist commercial producers with optimising the use of irrigation water, the
responses to drought of mature and young tea crops (22 and 5 years after field
planting respectively) were compared using data from two adjacent long-term
irrigation experiments in Southern Tanzania. Providing the maximum potential
soil water deficit was below about 400-500 mm for mature, and 200-250 mm for
young plants (clone 6/8), annual yields of dry tea from rainfed or partially
irrigated crops were similar to those from the corresponding well-watered crops.
At deficits greater than this, annual yields declined rapidly in young tea (up
to 22 kg (ha mm)-1) but relatively slowly in mature tea (up to 6.5 kg (ha mm)-
1). This apparent insensitivity of the mature crop to drought was due
principally to compensation that occurred during the rains for yield lost in the
dry season. Differences in dry matter distribution and shoot to root ratios
contributed to these contrasting responses. Thus, the total above ground dry
mass of well-irrigated, mature plants was about twice that for young plants.
Similarly, the total mass of structural roots (>1 mm diameter), to 3 m depth,
was four times greater in the mature crop than in the young crop and, for fine
roots (<1 mm diameter), eight times greater. The corresponding shoot to root
ratios (dry mass) were about 1:1 and 2:1 respectively. In addition, each unit
area of leaf in the canopy of a mature plant had six times more fine roots (by
weight) available to extract and supply water than did a young plant. Despite
the logistical benefits resulting from more even crop distribution during the
year when crops are fully irrigated, producers currently prefer to save water
and energy costs by allowing a substantial soil water deficit to develop prior
to the start of the rains, up to 250 mm in mature tea, knowing that yield
compensation will occur later
Alpha/beta and gamma interferons are induced by infection with noncytopathic bovine viral diarrhea virus in vivo
In contrast to the results of previous in vitro studies, experimental infection of calves with noncytopathic bovine viral diarrhea virus (ncpBVDV) was found to induce strong alpha/beta and gamma interferon responses in gnotobiotic animals. These responses were associated with depressed levels of transforming growth factor β (TGF-β) in serum. The results of this study indicate that the immunosuppression caused by ncpBVDV is not associated with low interferon responses or elevated levels of TGF-β
Stationary Kolmogorov Solutions of the Smoluchowski Aggregation Equation with a Source Term
In this paper we show how the method of Zakharov transformations may be used
to analyze the stationary solutions of the Smoluchowski aggregation equation
for arbitrary homogeneous kernel. The resulting massdistributions are of
Kolmogorov type in the sense that they carry a constant flux of mass from small
masses to large. We derive a ``locality criterion'', expressed in terms of the
asymptotic properties of the kernel, that must be satisfied in order for the
Kolmogorov spectrum to be an admissiblesolution. Whether a given kernel leads
to a gelation transition or not can be determined by computing the mass
capacity of the Kolmogorov spectrum. As an example, we compute the exact
stationary state for the family of
kernels, which includes both gelling and
non-gelling cases, reproducing the known solution in the case .
Surprisingly, the Kolmogorov constant is the same for all kernels in this
family.Comment: This article is an expanded version of a talk given at IHP workshop
"Dynamics, Growth and Singularities of Continuous Media", Paris July 2003.
Updated 01/04/04. Revised version with additional discussion, references
added, several typographical errors corrected. Revised version accepted for
publication by Phys. Rev.
Tunable tunneling: An application of stationary states of Bose-Einstein condensates in traps of finite depth
The fundamental question of how Bose-Einstein condensates tunnel into a
barrier is addressed. The cubic nonlinear Schrodinger equation with a finite
square well potential, which models a Bose-Einstein condensate in a
quasi-one-dimensional trap of finite depth, is solved for the complete set of
localized and partially localized stationary states, which the former evolve
into when the nonlinearity is increased. An immediate application of these
different solution types is tunable tunneling. Magnetically tunable Feshbach
resonances can change the scattering length of certain Bose-condensed atoms,
such as Rb, by several orders of magnitude, including the sign, and
thereby also change the mean field nonlinearity term of the equation and the
tunneling of the wavefunction. We find both linear-type localized solutions and
uniquely nonlinear partially localized solutions where the tails of the
wavefunction become nonzero at infinity when the nonlinearity increases. The
tunneling of the wavefunction into the non-classical regime and thus its
localization therefore becomes an external experimentally controllable
parameter.Comment: 11 pages, 5 figure
Metastable Quantum Phase Transitions in a Periodic One-dimensional Bose Gas: Mean-Field and Bogoliubov Analyses
We generalize the concept of quantum phase transitions, which is
conventionally defined for a ground state and usually applied in the
thermodynamic limit, to one for \emph{metastable states} in \emph{finite size
systems}. In particular, we treat the one-dimensional Bose gas on a ring in the
presence of both interactions and rotation. To support our study, we bring to
bear mean-field theory, i.e., the nonlinear Schr\"odinger equation, and linear
perturbation or Bogoliubov-de Gennes theory. Both methods give a consistent
result in the weakly interacting regime: there exist \emph{two topologically
distinct quantum phases}. The first is the typical picture of superfluidity in
a Bose-Einstein condensate on a ring: average angular momentum is quantized and
the superflow is uniform. The second is new: one or more dark solitons appear
as stationary states, breaking the symmetry, the average angular momentum
becomes a continuous quantity, and the phase of the condensate can be
continuously wound and unwound
Convergence to a self-similar solution in general relativistic gravitational collapse
We study the spherical collapse of a perfect fluid with an equation of state
by full general relativistic numerical simulations. For 0, it has been known that there exists a general relativistic counterpart
of the Larson-Penston self-similar Newtonian solution. The numerical
simulations strongly suggest that, in the neighborhood of the center, generic
collapse converges to this solution in an approach to a singularity and that
self-similar solutions other than this solution, including a ``critical
solution'' in the black hole critical behavior, are relevant only when the
parameters which parametrize initial data are fine-tuned. This result is
supported by a mode analysis on the pertinent self-similar solutions. Since a
naked singularity forms in the general relativistic Larson-Penston solution for
0, this will be the most serious known counterexample against
cosmic censorship. It also provides strong evidence for the self-similarity
hypothesis in general relativistic gravitational collapse. The direct
consequence is that critical phenomena will be observed in the collapse of
isothermal gas in Newton gravity, and the critical exponent will be
given by , though the order parameter cannot be the black
hole mass.Comment: 22 pages, 15 figures, accepted for publication in Physical Review D,
reference added, typos correcte
Hartree-Fock-Bogoliubov Model and Simulation of Attractive and Repulsive Bose-Einstein Condensates
We describe a model of dynamic Bose-Einstein condensates near a Feshbach
resonance that is computationally feasible under assumptions of spherical or
cylindrical symmetry. Simulations in spherical symmetry approximate the
experimentally measured time to collapse of an unstably attractive condensate
only when the molecular binding energy in the model is correct, demonstrating
that the quantum fluctuations and atom-molecule pairing included in the model
are the dominant mechanisms during collapse. Simulations of condensates with
repulsive interactions find some quantitative disagreement, suggesting that
pairing and quantum fluctuations are not the only significant factors for
condensate loss or burst formation. Inclusion of three-body recombination was
found to be inconsequential in all of our simulations, though we do not
consider recent experiments [1] conducted at higher densities
- …