9 research outputs found

    Active space debris removal by a hybrid propulsion module

    Get PDF
    During the last 40 years, the mass of the artificial objects in orbit increased quite steadily at the rate of about 145 metric tons annually, leading to a total tally of approximately 7000 metric tons. Now, most of the cross-sectional area and mass (97% in LEO) is concentrated in about 4600 intact objects, i.e. abandoned spacecraft and rocket bodies, plus a further 1000 operational spacecraft. Simulations and parametric analyses have shown that the most efficient and effective way to prevent the outbreak of a long-term exponential growth of the catalogued debris population would be to remove enough cross-sectional area and mass from densely populated orbits. In practice, according to the most recent NASA results, the active yearly removal of approximately 0.1% of the abandoned intact objects would be sufficient to stabilize the catalogued debris in low Earth orbit, together with the worldwide adoption of mitigation measures. The candidate targets for removal would have typical masses between 500 and 1000 kg, in the case of spacecraft, and of more than 1000 kg, in the case of rocket upper stages. Current data suggest that optimal active debris removal missions should be carried out in a few critical altitude-inclination bands. This paper deals with the feasibility study of a mission in which the debris is removed by using a hybrid propulsion module as propulsion unit. Specifically, the engine is transferred from a servicing platform to the debris target by a robotic arm so to perform a controlled disposal. Hybrid rocket technology for de-orbiting applications is considered a valuable option due to high specific impulse, intrinsic safety, thrust throttle ability, low environmental impact and reduced operating costs. Typically, in hybrid rockets a gaseous or liquid oxidizer is injected into the combustion chamber along the axial direction to burn a solid fuel. However, the use of tangential injection on a solid grain Pancake Geometry allows for more compact design of the propulsion unit. Only explorative tests were performed in the past on this rocket configuration, which appears to be suitable as de-orbiting system of new satellites as well as for direct application on large debris in the framework of a mission for debris removal. The paper describes some critical aspects of the mission with particular concern to the target selection, the hybrid propulsion module, the operations as well as the systems needed to rendezvous and dock with the target, and the disposal strateg

    System Analysis of Space Missions [Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Ρ‹ΠΉ рСсурс] : electronic lecture notes

    No full text
    Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹: Adobe Acrobat.Π’Ρ€ΡƒΠ΄Ρ‹ сотрудников БГАУ(элСктрон. вСрсия)

    System Analysis of Space Missions [Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Ρ‹ΠΉ рСсурс] : electronic laboratory course

    No full text
    The present laboratory practice on discipline Β«System Analysis of Space MissionsΒ» urged to give practical skills in carrying out of the complex analysis of almost any typical missions in a circumterraneous space. Problems in a practical work represent a cΠ’Ρ€ΡƒΠ΄Ρ‹ сотрудников БГАУ(элСктрон. вСрсия).Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹: Adobe Acrobat

    The Repercussion ot Natural and Technogeniс Ore-Gold Objects in Litogeochemical and Biogeochemical Fields

    No full text
    ИсслСдованиС Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π³Π΅ΠΎΠ»ΠΎΠ³ΠΎ-поисковых Ρ€Π°Π±ΠΎΡ‚ Π½Π° Π”ΡŽΠ±ΠΊΠΎΡˆΡΠΊΠΎΠΉ золотоносной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ ΠΎΠ΄Π½ΠΎΠΈΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π³Ρ€Π°Π±Π΅Π½Π°, Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π² структурах складчатого обрамлСния Ангаро-Вунгусской ΠΈ Ватарской Π·ΠΎΠ½. ЦСлью исслСдования стала ΠΎΡ†Π΅Π½ΠΊΠ° поисковой информативности Π»ΠΈΡ‚ΠΎ- ΠΈ биогСохимичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈ изучСния возмоТности использования ΠΈΡ… для Ρ€Π°Π·Π±Ρ€Π°ΠΊΠΎΠ²ΠΊΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… гСохимичСских Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π·ΠΎΠ»ΠΎΡ‚Π°This research wass carried ouy within the geological-searching works on the auriferous Dubkosh area, which bounds the fragment of the same named graben. This graben is confined in the structures of plicated framing. The estimate of searching informativity of litogeochemical and biogeochemical methods and studying the possibility of using them for separation natural and tecnogenic geochemical gold anomalies was the purpose of this researc

    The Repercussion ot Natural and Technogeniс Ore-Gold Objects in Litogeochemical and Biogeochemical Fields

    No full text
    ИсслСдованиС Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Π³Π΅ΠΎΠ»ΠΎΠ³ΠΎ-поисковых Ρ€Π°Π±ΠΎΡ‚ Π½Π° Π”ΡŽΠ±ΠΊΠΎΡˆΡΠΊΠΎΠΉ золотоносной ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ ΠΎΠ΄Π½ΠΎΠΈΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ Π³Ρ€Π°Π±Π΅Π½Π°, Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π² структурах складчатого обрамлСния Ангаро-Вунгусской ΠΈ Ватарской Π·ΠΎΠ½. ЦСлью исслСдования стала ΠΎΡ†Π΅Π½ΠΊΠ° поисковой информативности Π»ΠΈΡ‚ΠΎ- ΠΈ биогСохимичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈ изучСния возмоТности использования ΠΈΡ… для Ρ€Π°Π·Π±Ρ€Π°ΠΊΠΎΠ²ΠΊΠΈ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… гСохимичСских Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ Π·ΠΎΠ»ΠΎΡ‚Π°This research wass carried ouy within the geological-searching works on the auriferous Dubkosh area, which bounds the fragment of the same named graben. This graben is confined in the structures of plicated framing. The estimate of searching informativity of litogeochemical and biogeochemical methods and studying the possibility of using them for separation natural and tecnogenic geochemical gold anomalies was the purpose of this researc
    corecore