684 research outputs found

    Excitation of interfacial waves via near---resonant surface---interfacial wave interactions

    Full text link
    We consider interactions between surface and interfacial waves in the two layer system. Our approach is based on the Hamiltonian structure of the equations of motion, and includes the general procedure for diagonalization of the quadratic part of the Hamiltonian. Such diagonalization allows us to derive the interaction crossection between surface and interfacial waves and to derive the coupled kinetic equations describing spectral energy transfers in this system. Our kinetic equation allows resonant and near resonant interactions. We find that the energy transfers are dominated by the class III resonances of \cite{Alam}. We apply our formalism to calculate the rate of growth for interfacial waves for different values of the wind velocity. Using our kinetic equation, we also consider the energy transfer from the wind generated surface waves to interfacial waves for the case when the spectrum of the surface waves is given by the JONSWAP spectrum and interfacial waves are initially absent. We find that such energy transfer can occur along a timescale of hours; there is a range of wind speeds for the most effective energy transfer at approximately the wind speed corresponding to white capping of the sea. Furthermore, interfacial waves oblique to the direction of the wind are also generated

    Anomalous probability of large amplitudes in wave turbulence

    Full text link
    Time evolution equation for the Probability Distribution Function (PDF) is derived for system of weakly interacting waves. It is shown that a steady state for such system may correspond to strong intermittency

    Joint statistics of amplitudes and phases in Wave Turbulence

    Full text link
    Random Phase Approximation (RPA) provides a very convenient tool to study the ensembles of weakly interacting waves, commonly called Wave Turbulence. In its traditional formulation, RPA assumes that phases of interacting waves are random quantities but it usually ignores randomness of their amplitudes. Recently, RPA was generalised in a way that takes into account the amplitude randomness and it was applied to study of the higher momenta and probability densities of wave amplitudes. However, to have a meaningful description of wave turbulence the RPA properties assumed for the initial fields must be proven to survive over the nonlinear evolution time, and such a proof is the main goal of the present paper. We derive an evolution equation for the full probability density function which contains the complete information about the joint statistics of all wave amplitudes and phases. We show that, for any initial statistics of the amplitudes, the phase factors remain statistically independent uniformly distributed variables. If in addition the initial amplitudes are also independent variables (but with arbitrary distributions) they will remain independent when considered in small sets which are much less than the total number of modes. However, if the size of a set is of order of the total number of modes then the joint probability density for this set is not factorisable into the product of one-mode probabilities. In the other words, the modes in such a set are involved in a ``collective'' (correlated) motion. We also study new type of correlators describing the phase statistics.Comment: 27 pages, uses feynmf packag
    • …
    corecore