1,125 research outputs found

    Genomic analyses reveal an absence of contemporary introgressive admixture between fin whales and blue whales, despite known hybrids

    Get PDF
    Fin whales (Balaenoptera physalus) and blue whales (B. musculus) are the two largest species on Earth and are widely distributed across the world's oceans. Hybrids between these species appear to be relatively widespread and have been reported in both the North Atlantic and North Pacific; they are also relatively common, and have been proposed to occur once in every thousand fin whales. However, despite known hybridization, fin and blue whales are not sibling species. Rather, the closest living relative of fin whales are humpback whales (Megaptera novaeangliae). To improve the quality of fin whale data available for analysis, we assembled and annotated a fin whale nuclear genome using in-silico mate pair libraries and previously published short-read data. Using this assembly and genomic data from a humpback, blue, and bowhead whale, we investigated whether signatures of introgression between the fin and blue whale could be found. We find no signatures of contemporary admixture in the fin and blue whale genomes, although our analyses support ancestral gene flow between the species until 2.4-1.3 Ma. We propose the following explanations for our findings; i) fin/blue whale hybridization does not occur in the populations our samples originate from, ii) contemporary hybrids are a recent phenomenon and the genetic consequences have yet to become widespread across populations, or iii) fin/blue whale hybrids are under large negative selection, preventing them from backcrossing and contributing to the parental gene pools

    MicroRNA-24 regulates vascularity after myocardial infarction

    Get PDF
    BACKGROUND: Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. METHODS AND RESULTS: Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival. CONCLUSIONS: Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease. [KEYWORDS: Animals, Apoptosis/drug effects, Arterioles/pathology, Capillaries/pathology, Cell Hypoxia, Cells, Cultured/drug effects/metabolism, Collagen, Drug Combinations, Drug Evaluation, Preclinical, Endothelial Cells/ metabolism/pathology, GATA2 Transcription Factor/biosynthesis/genetics, Gene Expression Profiling, Heart Failure/etiology, Heme Oxygenase-1/biosynthesis/genetics, Laminin, Male, Mice, Mice, Inbred C57BL, MicroRNAs/antagonists & inhibitors/genetics/ physiology, Myocardial Infarc

    Hundred photon microwave ionization of Rydberg atoms in a static electric field

    Full text link
    We present analytical and numerical results for the microwave excitation of nonhydrogenic atoms in a static electric field when up to 1000 photons are required to ionize an atom. For small microwave fields, dynamical localization in photon number leads to exponentially small ionization while above quantum delocalization border ionization goes in a diffusive way. For alkali atoms in a static field the ionization border is much lower than in hydrogen due to internal chaos.Comment: revtex, 4 pages, 5 figure

    Ionization of Rydberg atoms by blackbody radiation

    Full text link
    We have studied an ionization of alkali-metal Rydberg atoms by blackbody radiation (BBR). The results of the theoretical calculations of ionization rates of Li, Na, K, Rb and Cs Rydberg atoms are presented. Calculations have been performed for nS, nP and nD states which are commonly used in a variety of experiments, at principal quantum numbers n=8-65 and at the three ambient temperatures of 77, 300 and 600 K. A peculiarity of our calculations is that we take into account the contributions of BBR-induced redistribution of population between Rydberg states prior to photoionization and field ionization by extraction electric field pulses. The obtained results show that these phenomena affect both the magnitude of measured ionization rates and shapes of their dependences on n. A Cooper minimum for BBR-induced transitions between bound Rydberg states of Li has been found. The calculated ionization rates are compared with our earlier measurements of BBR-induced ionization rates of Na nS and nD Rydberg states with n=8-20 at 300 K. A good agreement for all states except nS with n>15 is observed. Useful analytical formulas for quick estimation of BBR ionization rates of Rydberg atoms are presented. Application of BBR-induced ionization signal to measurements of collisional ionization rates is demonstrated.Comment: 36 pages, 16 figures. Paper is revised following NJP referees' comments and suggestion

    Circulating MicroRNAs Are Not Eliminated by Hemodialysis

    Get PDF
    BACKGROUND: Circulating microRNAs are stably detectable in serum/plasma and other body fluids. In patients with acute kidney injury on dialysis therapy changes of miRNA patterns had been detected. It remains unclear if and how the dialysis procedure itself affects circulating microRNA level. METHODS: We quantified miR-21 and miR-210 by quantitative RT-PCR in plasma of patients with acute kidney injury requiring dialysis and measured pre- and post-dialyser miRNA levels as well as their amount in the collected spent dialysate. Single treatments using the following filters were studied: F60 S (1.3 m(2), Molecular Weight Cut Off (MWCO): 30 kDa, n = 8), AV 1000 S (1.8 m(2), MWCO: 30 kDa, n = 6) and EMiC 2 (1.8 m(2), MWCO: 40 kDa, n = 6). RESULTS: Circulating levels of miR-21 or -210 do not differ between pre- and post-dialyzer blood samples independently of the used filter surface and pore size: miR-21: F60S: p = 0.35, AV 1000 S p = 1.0, EMiC2 p = 1.0; miR-210: F60S: p = 0.91, AV 1000 S p = 0.09, EMiC2 p = 0.31. Correspondingly, only traces of both miRNAs could be found in the collected spent dialysate and ultrafiltrate. CONCLUSIONS: In patients with acute kidney injury circulating microRNAs are not removed by dialysis. As only traces of miR-21 and -210 are detected in dialysate and ultrafiltrate, microRNAs in the circulation are likely to be transported by larger structures such as proteins and/or microvesicles. As miRNAs are not affected by dialysis they might be more robust biomarkers of acute kidney injury

    Benefit of respiratory gating in the Danish Breast Cancer Group partial breast irradiation trial

    Get PDF
    Background and purpose: Partial breast irradiation (PBI)has beenthe Danish Breast Cancer Group(DBCG) standard for selected breast cancer patients since 2016 based onearlyresults from the DBCG PBI trial.During trial accrual, respiratory-gated radiotherapy was introduced in Denmark. This study aims to investigate the effect of respiratory-gating on mean heart dose (MHD).Patients and methods: From 2009 to 2016 the DBCG PBI trial included 230 patientswith left-sided breast cancer receiving external beam PBI, 40 Gy/15 fractions/3 weeks.Localization of the tumor bed on the planning CT scan, the use of respiratory-gating, coverage of the clinical target volume (CTV), and doses to organs at risk were collected.Results: Respiratory-gating was used in 123 patients (53 %). In 176 patients (77 %) the tumor bed was in the upper and in 54 patients (23 %) in the lower breast quadrants. The median MHD was 0.37 Gy (interquartile range 0.26-0.57 Gy), 0.33 Gy (0.23-0.49 Gy) for respiratory-gating, and 0.49 Gy (0.31-0.70 Gy) for free breathing, p < 0.0001. MHD was < 1 Gy in 206 patients (90 %) and < 2 Gy in 221 patients (96 %). Respiratory-gating led to significantly lower MHD for upper-located, but not for lower-located tumor beds, however, all MHD were low irrespective of respiratory-gating. Respiratory-gating did not improve CTV coverage or lower lung doses.Conclusions: PBI ensured a low MHD for most patients. Adding respiratory-gating further reduced MHD for upper-located but not for lower-located tumor beds but did not influence target coverage or lung doses. Respiratory-gating is no longer DBCG standard for left-sided PBI
    • …
    corecore