127 research outputs found

    Performance of serum-supplemented and serum-free media in IFNγ Elispot Assays for human T cells

    Get PDF
    The choice of serum for supplementation of media for T cell assays and in particular, Elispot has been a major challenge for assay performance, standardization, optimization, and reproducibility. The Assay Working Group of the Cancer Vaccine Consortium (CVC-CRI) has recently identified the choice of serum to be the leading cause for variability and suboptimal performance in large international Elispot proficiency panels. Therefore, a serum task force was initiated to compare the performance of commercially available serum-free media to laboratories’ own medium/serum combinations. The objective of this project was to investigate whether a serum-free medium exists that performs as well as lab-own serum/media combinations with regard to antigen-specific responses and background reactivity in Elispot. In this way, a straightforward solution could be provided to address the serum challenge. Eleven laboratories tested peripheral blood mononuclear cells (PBMC) from four donors for their reactivity against two peptide pools, following their own Standard Operating Procedure (SOP). Each laboratory performed five simultaneous experiments with the same SOP, the only difference between the experiments was the medium used. The five media were lab-own serum-supplemented medium, AIM-V, CTL, Optmizer, and X-Vivo. The serum task force results demonstrate compellingly that serum-free media perform as well as qualified medium/serum combinations, independent of the applied SOP. Recovery and viability of cells are largely unaffected by serum-free conditions even after overnight resting. Furthermore, one serum-free medium was identified that appears to enhance antigen-specific IFNγ-secretion

    Temozolomide- and fotemustine-induced apoptosis in human malignant melanoma cells: response related to MGMT, MMR, DSBs, and p53

    Get PDF
    Malignant melanomas are highly resistant to chemotherapy. First-line chemotherapeutics used in melanoma therapy are the methylating agents dacarbazine (DTIC) and temozolomide (TMZ) and the chloroethylating agents BCNU and fotemustine. Here, we determined the mode of cell death in 11 melanoma cell lines upon exposure to TMZ and fotemustine. We show for the first time that TMZ induces apoptosis in melanoma cells, using therapeutic doses. For both TMZ and fotemustine apoptosis is the dominant mode of cell death. The contribution of necrosis to total cell death varied between 10 and 40%. The O6-methylguanine-DNA methyltransferase (MGMT) activity in the cell lines was between 0 and 1100 fmol mg−1 protein, and there was a correlation between MGMT activity and the level of resistance to TMZ and fotemustine. MGMT inactivation by O6-benzylguanine sensitized all melanoma cell lines expressing MGMT to TMZ and fotemustine-induced apoptosis, and MGMT transfection attenuated the apoptotic response. This supports that O6-alkylguanines are critical lesions involved in the initiation of programmed melanoma cell death. One of the cell lines (MZ7), derived from a patient subjected to DTIC therapy, exhibited a high level of resistance to TMZ without expressing MGMT. This was related to an impaired expression of MSH2 and MSH6. The cells were not cross-resistant to fotemustine. Although these data indicate that methylating drug resistance of melanoma cells can be acquired by down-regulation of mismatch repair, a correlation between MSH2 and MSH6 expression in the different lines and TMZ sensitivity was not found. Apoptosis in melanoma cells induced by TMZ and fotemustine was accompanied by double-strand break (DSB) formation (as determined by H2AX phosphorylation) and caspase-3 and -7 activation as well as PARP cleavage. For TMZ, DSBs correlated significantly with the apoptotic response, whereas for fotemustine a correlation was not found. Melanoma lines expressing p53 wild-type were more resistant to TMZ and fotemustine than p53 mutant melanoma lines, which is in marked contrast to previous data reported for glioma cells treated with TMZ. Overall, the findings are in line with the model that in melanoma cells TMZ-induced O6-methylguanine triggers the apoptotic (and necrotic) pathway through DSBs, whereas for chloroethylating agents apoptosis is triggered in a more complex manner

    EGFR T790M Mutation as a Possible Target for Immunotherapy; Identification of HLA-A*0201-Restricted T Cell Epitopes Derived from the EGFR T790M Mutation

    Get PDF
    Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, has achieved high clinical response rates in patients with non–small cell lung cancers (NSCLCs). However, over time, most tumors develop acquired resistance to EGFR-TKIs, which is associated with the secondary EGFR T790M resistance mutation in about half the cases. Currently there are no effective treatment options for patients with this resistance mutation. Here we identified two novel HLA-A*0201 (A2)-restricted T cell epitopes containing the mutated methionine residue of the EGFR T790M mutation, T790M-5 (MQLMPFGCLL) and T790M-7 (LIMQLMPFGCL), as potential targets for EGFR-TKI-resistant patients. When peripheral blood cells were repeatedly stimulated in vitro with these two peptides and assessed by antigen-specific IFN-γ secretion, T cell lines responsive to T790M-5 and T790M-7 were established in 5 of 6 (83%) and 3 of 6 (50%) healthy donors, respectively. Additionally, the T790M-5- and T790M-7-specific T cell lines displayed an MHC class I-restricted reactivity against NSCLC cell lines expressing both HLA-A2 and the T790M mutation. Interestingly, the NSCLC patients with antigen-specific T cell responses to these epitopes showed a significantly less frequency of EGFR-T790M mutation than those without them [1 of 7 (14%) vs 9 of 15 (60%); chi-squared test, p = 0.0449], indicating the negative correlation between the immune responses to the EGFR-T790M-derived epitopes and the presence of EGFR-T790M mutation in NSCLC patients. This finding could possibly be explained by the hypothesis that immune responses to the mutated neo-antigens derived from T790M might prevent the emergence of tumor cell variants with the T790M resistance mutation in NSCLC patients during EGFR-TKI treatment. Together, our results suggest that the identified T cell epitopes might provide a novel immunotherapeutic approach for prevention and/or treatment of EGFR-TKI resistance with the secondary EGFR T790M resistance mutation in NSCLC patients

    Regulation of Glucose Homeostasis by KSR1 and MARK2

    Get PDF
    Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1-/- mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1-/- mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2-/-ksr1-/- (DKO) mice were compared to wild type, mark2-/-, and ksr1-/- mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2-/- mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1-/- mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism

    Pitfalls in machine learning-based assessment of tumor-infiltrating lymphocytes in breast cancer: a report of the international immuno-oncology biomarker working group

    Get PDF
    The clinical significance of the tumor-immune interaction in breast cancer is now established, and tumor-infiltrating lymphocytes (TILs) have emerged as predictive and prognostic biomarkers for patients with triple-negative (estrogen receptor, progesterone receptor, and HER2-negative) breast cancer and HER2-positive breast cancer. How computational assessments of TILs might complement manual TIL assessment in trial and daily practices is currently debated. Recent efforts to use machine learning (ML) to automatically evaluate TILs have shown promising results. We review state-of-the-art approaches and identify pitfalls and challenges of automated TIL evaluation by studying the root cause of ML discordances in comparison to manual TIL quantification. We categorize our findings into four main topics: (1) technical slide issues, (2) ML and image analysis aspects, (3) data challenges, and (4) validation issues. The main reason for discordant assessments is the inclusion of false-positive areas or cells identified by performance on certain tissue patterns or design choices in the computational implementation. To aid the adoption of ML for TIL assessment, we provide an in-depth discussion of ML and image analysis, including validation issues that need to be considered before reliable computational reporting of TILs can be incorporated into the trial and routine clinical management of patients with triple-negative breast cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    Involvement of SIK3 in Glucose and Lipid Homeostasis in Mice

    Get PDF
    Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3−/− mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3−/− mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3−/− mice. Lipid metabolism disorders in Sik3−/− mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice

    Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer

    Get PDF

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
    • …
    corecore