627 research outputs found

    Automation of the matrix element reweighting method

    Full text link
    Matrix element reweighting is a powerful experimental technique widely employed to maximize the amount of information that can be extracted from a collider data set. We present a procedure that allows to automatically evaluate the weights for any process of interest in the standard model and beyond. Given the initial, intermediate and final state particles, and the transfer functions for the final physics objects, such as leptons, jets, missing transverse energy, our algorithm creates a phase-space mapping designed to efficiently perform the integration of the squared matrix element and the transfer functions. The implementation builds up on MadGraph, it is completely automatized and publicly available. A few sample applications are presented that show the capabilities of the code and illustrate the possibilities for new studies that such an approach opens up.Comment: 41 pages, 21 figure

    DELPHES 3, A modular framework for fast simulation of a generic collider experiment

    Get PDF
    The version 3.0 of the DELPHES fast-simulation is presented. The goal of DELPHES is to allow the simulation of a multipurpose detector for phenomenological studies. The simulation includes a track propagation system embedded in a magnetic field, electromagnetic and hadron calorimeters, and a muon identification system. Physics objects that can be used for data analysis are then reconstructed from the simulated detector response. These include tracks and calorimeter deposits and high level objects such as isolated electrons, jets, taus, and missing energy. The new modular approach allows for greater flexibility in the design of the simulation and reconstruction sequence. New features such as the particle-flow reconstruction approach, crucial in the first years of the LHC, and pile-up simulation and mitigation, which is needed for the simulation of the LHC detectors in the near future, have also been implemented. The DELPHES framework is not meant to be used for advanced detector studies, for which more accurate tools are needed. Although some aspects of DELPHES are hadron collider specific, it is flexible enough to be adapted to the needs of electron-positron collider experiments.Comment: JHEP 1402 (2014

    Field-Driven Domain-Wall Dynamics in GaMnAs Films with Perpendicular Anisotropy

    Full text link
    We combine magneto-optical imaging and a magnetic field pulse technique to study domain wall dynamics in a ferromagnetic (Ga,Mn)As layer with perpendicular easy axis. Contrary to ultrathin metallic layers, the depinning field is found to be smaller than the Walker field, thereby allowing for the observation of the steady and precessional flow regimes. The domain wall width and damping parameters are determined self-consistently. The damping, 30 times larger than the one deduced from ferromagnetic resonance, is shown to essentially originate from the non-conservation of the magnetization modulus. An unpredicted damping resonance and a dissipation regime associated with the existence of horizontal Bloch lines are also revealed

    Expansion-Free Evolving Spheres Must Have Inhomogeneous Energy Density Distributions

    Full text link
    In a recent paper a systematic study on shearing expansion-free spherically symmetric distributions was presented. As a particular case of such systems, the Skripkin model was mentioned, which corresponds to a nondissipative perfect fluid with a constant energy density. Here we show that such a model is inconsistent with junction conditions. It is shown that in general for any nondissipative fluid distribution, the expansion-free condition requires the energy density to be inhomogeneous. As an example we consider the case of dust, which allows for a complete integration.Comment: 8 pages, Latex. To appear in Phys. Rev.D. Typos correcte

    Expansion-Free Cavity Evolution: Some exact Analytical Models

    Full text link
    We consider spherically symmetric distributions of anisotropic fluids with a central vacuum cavity, evolving under the condition of vanishing expansion scalar. Some analytical solutions are found satisfying Darmois junction conditions on both delimiting boundary surfaces, while some others require the presence of thin shells on either (or both) boundary surfaces. The solutions here obtained model the evolution of the vacuum cavity and the surrounding fluid distribution, emerging after a central explosion. This study complements a previously published work where modeling of the evolution of such kind of systems was achieved through a different kinematical condition.Comment: 9 pages, Revtex. Typos corrected. Published in Int. J. Mod. Phys.

    Double Distribution of Dark Matter Halos with respect to Mass and Local Overdensity

    Full text link
    We present a double distribution function of dark matter halos, with respect to both object mass and local over- (or under-) density. This analytical tool provides a statistical treatment of the properties of matter surrounding collapsed objects, and can be used to study environmental effects on hierarchical structure formation. The size of the "local environment" of a collapsed object is defined to depend on the mass of the object. The Press-Schechter mass function is recovered by integration of our double distribution over the density contrast. We also present a detailed treatment of the evolution of overdensities and underdensities in Einstein-deSitter and flat LCDM universes, according to the spherical evolution model. We explicitly distinguish between true and linearly extrapolated overdensities and provide conversion relations between the two quantities.Comment: 25 pages, 10 figures, comments welcom

    Determination of the micromagnetic parameters in (Ga,Mn)As using domain theory

    Full text link
    The magnetic domain structure and magnetic properties of a ferromagnetic (Ga,Mn)As epilayer with perpendicular magnetic easy-axis are investigated. We show that, despite strong hysteresis, domain theory at thermodynamical equilibrium can be used to determine the micromagnetic parameters. Combining magneto-optical Kerr microscopy, magnetometry and ferromagnetic resonance measurements, we obtain the characteristic parameter for magnetic domains λc\lambda_c, the domain wall width and specific energy, and the spin stiffness constant as a function of temperature. The nucleation barrier for magnetization reversal and the Walker breakdown velocity for field-driven domain wall propagation are also estimated
    corecore