16,995 research outputs found
Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges
As a promising paradigm for fifth generation (5G) wireless communication
systems, cloud radio access networks (C-RANs) have been shown to reduce both
capital and operating expenditures, as well as to provide high spectral
efficiency (SE) and energy efficiency (EE). The fronthaul in such networks,
defined as the transmission link between a baseband unit (BBU) and a remote
radio head (RRH), requires high capacity, but is often constrained. This
article comprehensively surveys recent advances in fronthaul-constrained
C-RANs, including system architectures and key techniques. In particular, key
techniques for alleviating the impact of constrained fronthaul on SE/EE and
quality of service for users, including compression and quantization,
large-scale coordinated processing and clustering, and resource allocation
optimization, are discussed. Open issues in terms of software-defined
networking, network function virtualization, and partial centralization are
also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin
note: text overlap with arXiv:1407.3855 by other author
Free energy of formation of clusters of sulphuric acid and water molecules determined by guided disassembly
We evaluate the grand potential of a cluster of two molecular species,
equivalent to its free energy of formation from a binary vapour phase, using a
nonequilibrium molecular dynamics technique where guide particles, each
tethered to a molecule by a harmonic force, move apart to disassemble a cluster
into its components. The mechanical work performed in an ensemble of
trajectories is analysed using the Jarzynski equality to obtain a free energy
of disassembly, a contribution to the cluster grand potential. We study
clusters of sulphuric acid and water at 300 K, using a classical interaction
scheme, and contrast two modes of guided disassembly. In one, the cluster is
broken apart through simple pulling by the guide particles, but we find the
trajectories tend to be mechanically irreversible. In the second approach, the
guide motion and strength of tethering are modified in a way that prises the
cluster apart, a procedure that seems more reversible. We construct a surface
representing the cluster grand potential, and identify a critical cluster for
droplet nucleation under given vapour conditions. We compare the equilibrium
populations of clusters with calculations reported by Henschel et al. [J. Phys.
Chem. A 118, 2599 (2014)] based on optimised quantum chemical structures
Improved Algorithm for Degree Bounded Survivable Network Design Problem
We consider the Degree-Bounded Survivable Network Design Problem: the
objective is to find a minimum cost subgraph satisfying the given connectivity
requirements as well as the degree bounds on the vertices. If we denote the
upper bound on the degree of a vertex v by b(v), then we present an algorithm
that finds a solution whose cost is at most twice the cost of the optimal
solution while the degree of a degree constrained vertex v is at most 2b(v) +
2. This improves upon the results of Lau and Singh and that of Lau, Naor,
Salavatipour and Singh
Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft
The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical
Manifestly N=3 supersymmetric Euler-Heisenberg action in light-cone superspace
We find a manifestly N=3 supersymmetric generalization of the
four-dimensional Euler-Heisenberg (four-derivative, or F^4) part of the
Born-Infeld action in light-cone gauge, by using N=3 light-cone superspace.Comment: 9 pages, LaTeX, no figures, macros include
Electronic ground states of Fe and Co as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy
The electronic ground state of the Co diatomic molecular cation
has been assigned experimentally by x-ray absorption and x-ray magnetic
circular dichroism spectroscopy in a cryogenic ion trap. Three candidates,
, , and , for the electronic ground state of Fe
have been identified. These states carry sizable orbital angular momenta that
disagree with theoretical predictions from multireference configuration
interaction and density functional theory. Our results show that the ground
states of neutral and cationic diatomic molecules of transition elements
cannot generally be assumed to be connected by a one-electron process
Extensions and block decompositions for finite-dimensional representations of equivariant map algebras
Suppose a finite group acts on a scheme and a finite-dimensional Lie
algebra . The associated equivariant map algebra is the Lie
algebra of equivariant regular maps from to . The irreducible
finite-dimensional representations of these algebras were classified in
previous work with P. Senesi, where it was shown that they are all tensor
products of evaluation representations and one-dimensional representations. In
the current paper, we describe the extensions between irreducible
finite-dimensional representations of an equivariant map algebra in the case
that is an affine scheme of finite type and is reductive.
This allows us to also describe explicitly the blocks of the category of
finite-dimensional representations in terms of spectral characters, whose
definition we extend to this general setting. Applying our results to the case
of generalized current algebras (the case where the group acting is trivial),
we recover known results but with very different proofs. For (twisted) loop
algebras, we recover known results on block decompositions (again with very
different proofs) and new explicit formulas for extensions. Finally,
specializing our results to the case of (twisted) multiloop algebras and
generalized Onsager algebras yields previously unknown results on both
extensions and block decompositions.Comment: 41 pages; v2: minor corrections, formatting changed to match
published versio
Direct Observation of High-Spin States in Manganese Dimer and Trimer Cations by X-ray Magnetic Circular Dichroism Spectroscopy in an Ion Trap
The electronic structure and magnetic moments of free Mn and Mn
are characterized by x-ray absorption and x-ray magnetic circular
dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron
radiation beamline. Our results show directly that localized magnetic moments
of 5 are created by states at each ionic core,
which are coupled in parallel to form molecular high-spin states via indirect
exchange that is mediated in both cases by a delocalized valence electron in a
singly-occupied derived orbital with an unpaired spin. This leads to total
magnetic moments of 11 for Mn and 16 for Mn, with
no contribution of orbital angular momentum
- …