1,116 research outputs found

    Magneto-optical evidence of the percolation nature of the metal-insulator transition in the 2D electron system

    Get PDF
    We compare the results of the transport and time-resolved magneto-luminescence measurements in disordered 2D electron systems in GaAs-AlGaAs heterostructures in the extreme quantum limit, in particular, in the vicinity of the metal-insulator transition (MIT). At filling factors ν<1\nu <1, the optical signal has two components: the single-rate exponentially decaying part attributed to a uniform liquid and a power-law long-living tail specific to a microscopically inhomogeneous state of electrons. We interprete this result as a separation of the 2D electron system into a liquid and localized phases, especially because the MIT occurs strikingly close to those filling factors where the liquid occupies 12{1\over 2} of the sample area (the percollation threshold condition in two-component media).Comment: 5 pages RevTex + 4 fig., to appear in PRB, Rapid Com

    The Cyclotron Spin-Flip Mode as the Lowest-Energy Excitation of Unpolarized Integer Quantum Hall States

    Full text link
    The cyclotron spin-flip modes of spin unpolarized integer quantum Hall states (ν=2,4\nu =2,4) have been studied with inelastic light scattering. The energy of these modes is significantly smaller compared to the bare cyclotron gap. Second order exchange corrections are held responsible for a negative energy contribution and render these modes the lowest energy excitations of unpolarized integer quantum Hall states.Comment: Published: Phys. Rev. B 72, 073304 (2005

    Splitting of Landau levels of a 2D electron due to electron-phonon interactions

    Full text link
    We show that in a very strong magnetic field BB electron-phonon interaction gives rise to a splitting of Landau levels of a 2D electron into a series of infinitely degenerate sublevels. We provide both qualitative and quantitative description of this phenomenon. The cases of interaction with acoustic and polar optical phonons are considered. The energy distance between nearest sublevels in both cases tends to zero as B−1/2B^{-1/2} at large BB.Comment: 4 pages, LaTe
    • …
    corecore