129 research outputs found

    Optical orientation of the homogeneous non-equilibrium Bose-Einstein condensate of bright excitons (polaritons)

    Full text link
    A simple model, describing the dynamics of the non-equilibrium pseudospin of a homogeneous Bose-Einstein condensate of exciton polaritons, has been formulated. It explains the suppression of spin splitting of a non-equilibrium polariton condensate in an external magnetic field, the optical alignment, and the conversion of alignment into orientation of polaritons. It has been shown that inverse effects are possible, to wit, the spontaneous circular polarization and the enhancement of spin splitting of a non-equilibrium condensate of polaritons in the absence of external field.Comment: 21 pages, 2 figure

    Nuclear spin warm-up in bulk n-GaAs

    Full text link
    We show that the spin-lattice relaxation in n-type insulating GaAs is dramatically accelerated at low magnetic fields. The origin of this effect, that cannot be explained in terms of well-known diffusion-limited hyperfine relaxation, is found in the quadrupole relaxation, induced by fluctuating donor charges. Therefore, quadrupole relaxation, that governs low field nuclear spin relaxation in semiconductor quantum dots, but was so far supposed to be harmless to bulk nuclei spins in the absence of optical pumping can be studied and harnessed in much simpler model environment of n-GaAs bulk crystal.Comment: 5 pages, 4 figure

    Electrical control of optical orientation of neutral and negatively charged excitons in n-type semiconductor quantum well

    Full text link
    We report a giant electric field induced increase of spin orientation of excitons in n-type GaAs/AlGaAs quantum well. It correlates strongly with the formation of negatively charged excitons (trions) in the photoluminescence spectra. Under resonant excitation of neutral heavy-hole excitons, the polarization of excitons and trions increases dramatically with electrical injection of electrons within the narrow exciton-trion bias transition in the PL spectra, implying a polarization sensitivity of 200 % per Volt. This effect results from a very efficient trapping of neutral excitons by the quantum well interfacial fluctuations (so-called "natural" quantum dots) containing resident electrons.Comment: 18 pages, 4 figure

    Fine structure and optical pumping of spins in individual semiconductor quantum dots

    Full text link
    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information

    Multitudes of Stable States in a Periodically Driven Electron-Nuclear Spin System in a Quantum Dot

    Full text link
    The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. A similar frequency-locking effect exists for two-color and mode-locked excitations, too. However, the pulsed excitation with mode locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than a hundred stable channels.Comment: 28 pages, 4 Figure

    Longitudinal and transversal spin dynamics of donor-bound electrons in fluorine-doped ZnSe: spin inertia versus Hanle effect

    Get PDF
    The spin dynamics of the strongly localized, donor-bound electrons in fluorine-doped ZnSe epilayers is studied by pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time, T1T_1, in a wide range of magnetic fields, temperatures, and pump densities. The T1T_1 time of the donor-bound electron spin of about 1.6 μ\mus remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8−451.8-45 K. The inhomogeneous spin dephasing time, T2∗=8−33T_2^*=8-33 ns, is measured using the resonant spin amplification and Hanle effects under pulsed and steady-state pumping, respectively. These findings impose severe restrictions on possible spin relaxation mechanisms.Comment: 10 pages, 7 figure

    Electrically tunable g-factors in quantum dot molecular spin states

    Full text link
    We present a magneto-photoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g-factors of different spin states that have molecular wavefunctions distributed over both quantum dots. We propose a phenomenological model for the change in g-factor based on resonant changes in the amplitude of the wavefunction in the barrier due to the formation of bonding and antibonding orbitals.Comment: 5 pages, 5 figures, Accepted by Phys. Rev. Lett. New version reflects response to referee comment
    • …
    corecore