918,363 research outputs found

    Unconstrained Astrometric Orbits for Hipparcos Stars with Stochastic Solutions

    Get PDF
    A considerable number of astrometric binaries whose positions on the sky do not obey the standard model of mean position, parallax and linear proper motion, were observed by the Hipparcos satellite. Some of them remain non-discovered, and their observational data have not been properly processed with the more adequate astrometric model that includes nonlinear orbital motion. We develop an automated algorithm based on "genetic optimization", to solve the orbital fitting problem with no prior information about the orbital elements is available (from, e.g., spectroscopic data or radial velocity monitoring). We test this method on Hipparcos stars with known orbital solutions in the catalog, and further apply it to stars with stochastic solutions, which may be unresolved binaries. At a confidence level of 99%, orbital fits are obtained for 65 stars, most of which have not been known as binary. A few of the new probable binaries with A-type primaries with periods 444-2015 d are chemically peculiar stars, including Ap and \lambda Boo type. The anomalous spectra of these stars are explained as admixture of the light from the unresolved, sufficiently bright and massive companions. We estimate the apparent orbits of four stars which have been identified as members of the 300 Myr-old UMa kinematic group. Another four new nearby binaries may include low-mass M-type or brown dwarf companions. Similar astrometric models and algorithms can be used for binary stars and planet hosts observed by SIM PlanetQuest and Gaia

    F-electron spectral function of the Falicov-Kimball model in infinite dimensions: the half-filled case

    Full text link
    The f-electron spectral function of the Falicov-Kimball model is calculated via a Keldysh-based many-body formalism originally developed by Brandt and Urbanek. We provide results for both the Bethe lattice and the hypercubic lattice at half filling. Since the numerical computations are quite sensitive to the discretization along the Kadanoff-Baym contour and to the maximum cutoff in time that is employed, we analyze the accuracy of the results using a variety of different moment sum-rules and spectral formulas. We find that the f-electron spectral function has interesting temperature dependence becoming a narrow single-peaked function for small U and developing a gap, with two broader peaks for large U.Comment: (13 pages, 11 figures, typeset in RevTex 4

    A heuristic optimization method for mitigating the impact of a virus attack

    Get PDF
    Taking precautions before or during the start of a virus outbreak can heavily reduce the number of infected. The question which individuals should be immunized in order to mitigate the impact of the virus on the rest of population has received quite some attention in the literature. The dynamics of the of a virus spread through a population is often represented as information spread over a complex network. The strategies commonly proposed to determine which nodes are to be selected for immunization often involve only one centrality measure at a time, while often the topology of the network seems to suggest that a single metric is insufficient to capture the influence of a node entirely. In this work we present a generic method based on a genetic algorithm (GA) which does not rely explicitly on any centrality measures during its search but only exploits this type of information to narrow the search space. The fitness of an individual is defined as the estimated expected number of infections of a virus following SIR dynamics. The proposed method is evaluated on two contact networks: the Goodreau's Faux Mesa high school and the US air transportation network. The GA method manages to outperform the most common strategies based on a single metric for the air transportation network and its performance is comparable with the best performing strategy for the high school network.Comment: To appear in the proceedings of the International Conference on Computational Science (ICCS) in Barcelona. 11 pages, 5 figure

    High-temperature expansions through order 24 for the two-dimensional classical XY model on the square lattice

    Full text link
    The high-temperature expansion of the spin-spin correlation function of the two-dimensional classical XY (planar rotator) model on the square lattice is extended by three terms, from order 21 through order 24, and analyzed to improve the estimates of the critical parameters.Comment: 7 pages, 2 figure

    Asymptomatic Hypertrophic Cardiomyopathy: Diagnosis and Therapy

    Get PDF

    Critical exponents of the O(N) model in the infrared limit from functional renormalization

    Get PDF
    We determined the critical exponent ν\nu of the scalar O(N) model with a strategy based on the definition of the correlation length in the infrared limit. The functional renormalization group treatment of the model shows that there is an infrared fixed point in the broken phase. The appearing degeneracy induces a dynamical length scale there, which can be considered as the correlation length. It is shown that the IR scaling behavior can account either for the Ising type phase transition in the 3-dimensional O(N) model, or for the Kosterlitz-Thouless type scaling of the 2-dimensional O(2) model.Comment: final version, 7 pages 7 figures, to appear in Phys. Rev.

    Bias-induced insulator-metal transition in organic electronics

    Full text link
    We investigate the bias-induced insulator-metal transition in organic electronics devices, on the basis of the Su-Schrieffer-Heeger model combined with the non-equilibrium Green's function formalism. The insulator-metal transition is explained with the energy levels crossover that eliminates the Peierls phase and delocalizes the electron states near the threshold voltage. This may account for the experimental observations on the devices that exhibit intrinsic bistable conductance switching with large on-off ratio.Comment: 6 pages, 3 figures. To appear in Applied Physics Letter
    corecore