113 research outputs found

    On the mass splitting between axial and vector heavy-light mesons

    Get PDF
    Mass splitting between axial and vector Qˉq\bar{Q}q mesons is considered within the standard QCD sum rules. In agreement with the first experimental data on the B1B_1 meson (JP=1+J^P =1^{+}) we find that the splitting for B is about the same as for D and show that 1/mQ1/m_Q corrections to the meson masses are small.Comment: 5 pages, Latex, 6 figures in one uuencoded compressed postsript file (replacing corrupt file originally submitted

    The Goldberger -- Treiman Relation, gAg_A and gπNNg_{\pi NN} at T0T\neq 0

    Full text link
    The Goldberger-Treiman relation is shown to persist in the chiral limit at finite temperatures to order O(T2)O(T^2). The TT dependence of gAg_A turns out to be the same as for FπF_{\pi}, gA(T)=gA(0)(1T2/12F2)g_{A}(T)=g_{A}(0)(1-T^2/12F^2), while gπNNg_{\pi NN} is temperature independent to this order. The baryon octet D{\cal D} and F{\cal F} couplings also behave as FπF_{\pi} if only pions are massless in the pseudoscalar meson octet.Comment: 7p, NSF-ITP-93-145, BUTP-93/27, PUTP-1433, November 199

    Next-to-leading-order temperature corrections to correlators in QCD

    Full text link
    Corrections of order T4T^4 to vector and axial current correlators in QCD at a finite temperature T<TcT<T_c are obtained using dispersion relations for the amplitudes of deep inelastic scattering on pions. Their relation with the operator product expansion is presented. An interpretation of the results in terms of TT-dependent meson masses is given: masses of ρ\rho and a1a_1 start to move with temperature in order T4T^4.Comment: 13 pages, no figures, CERN-TH.7215/94, BUTP-94/
    corecore