65 research outputs found

    Search for a simultaneous signal from small transient events in the Pierre Auger Observatory and the Tupi muon telescopes

    Full text link
    We present results of a search for a possible signal from small scale solar transient events (such as flares and interplanetary shocks) as well as possible counterparts to Gamma-Ray Burst (GRB) observed simultaneously by the Tupi muon telescope Niteroi-Brazil, 22.90S, 43.20W, 3 m above sea level) and the Pierre Auger Observatory surface detectors (Malargue-Argentina, 69.30S, 35.30W, altitude 1400 m). Both cosmic ray experiments are located inside the South Atlantic Anomaly (SAA) region. Our analysis of several examples shows similarities in the behavior of the counting rate of low energy (above 100 MeV) particles in association with the solar activity (solar flares and interplanetary shocks). We also report an observation by the Tupi experiment of the enhancement of muons at ground level with a significance higher than 8 sigma in the 1-sec binning counting rate (raw data) in close time coincidence (T-184 sec) with the Swift-BAT GRB110928B (trigger=504307). The GRB 110928B coordinates are in the field of view of the vertical Tupi telescope, and the burst was close to the MAXI source J1836-194. The 5-min muon counting rate in the vertical Tupi telescope as well as publicly available data from Auger (15 minutes averages of the scaler rates) show small peaks above the background fluctuations at the time following the Swift-BAT GRB 110928B trigger. In accordance with the long duration trigger, this signal can possibly suggest a long GRB, with a precursor narrow peak at T-184 sec.Comment: 9 pages, 13 figure

    Inelasticity Distribution Of Hadron-pb Collisions In The Energy Region Exceeding 1014 Ev From Mountain Cosmic Ray Experiments

    Get PDF
    The inelasticity distribution of hadron-lead collisions in the energy region exceeding 1014 eV is estimated on the basis of 66 events, induced by cosmic ray hadrons and detected at high mountain altitudes at Pamir (4300 m, 595 g/cm2). The distribution of the best fitting is approximated as g(K)dK=[α(1-K)m1-1 + βKm2-1]dK, where m1=0.5, m2=1.125, α=0.26, β=0.55, giving 〈K〉=0.60. The errors of the parameters are discussed in the text. The distribution is compared with those which are based on theoretical models. ©1999 The American Physical Society.611110Frichter, G.M., Gaisser, T.K., Stanev, T., (1997) Phys. Rev. D, 56, p. 3135Fowler, G.N., Weiner, R.M., Wilk, G., (1985) Phys. Rev. Lett., 55, p. 173Fowler, G.N., Vourdas, A., Weiner, R.M., Wilk, G., (1987) Phys. Rev. D, 35, p. 870Fowler, G.N., Navarra, F.S., Plümer, M., Voudras, A., Weiner, R.M., Wilk, G., (1989) Phys. Rev. C, 40, p. 1219Shabelski, Yu.M., Weiner, R.M., Wilk, G., Włodarczyk, Z., (1992) J. Phys. G, 18, p. 1281Włodarczyk, Z., (1995) J. Phys. G, 21, p. 281Chou, T.T., Yang, C.N., (1985) Phys. Rev. D, 32, p. 1692Gaisser, T.K., Stanev, T., (1989) Phys. Lett. B, 219, p. 375Kaǐdalov, A.B., Ter-Martirosyan, K.A., (1987) Proceedings of the 20th International Cosmic Ray Conference, 5, p. 139(1984) Sov. J. Nucl. Phys., 40, p. 135Nazareth, R.A.M.S., Kodama, T., Portes Jr., D.A., (1992) Phys. Rev. D, 46, p. 2896Schatz, G., Thouw, T., Werner, K., Oehlschläger, J., Bekk, K., (1994) J. Phys. G, 20, p. 1267Gaisser, T.K., Protheroe, R.J., Turver, K.E., McComb, T.J.L., (1978) Rev. Mod. Phys., 50, p. 859Van Hove, L., Pokorski, S., (1975) Nucl. Phys., B86, p. 243Akashi, M., (1964) Prog. Theor. Phys. Suppl., 32, p. 1Feynman, R., (1969) Phys. Rev. Lett., 23, p. 1415Taylor, F.E., Carey, D.C., Johnson, J.R., Kammerud, R., Ritchie, D.J., Roberts, A., Sauer, J.R., Walker, J.K., (1976) Phys. Rev. D, 14, p. 1217Ohsawa, A., (1994) Prog. Theor. Phys., 92, p. 1005Arata, N., (1983) Nucl. Phys., B211, p. 189Tabuki, T., (1983) Prog. Theor. Phys. Suppl., 76, p. 40Chinellato, J.A., (1983) Prog. Theor. Phys. Suppl., 76, p. 1Alner, G.L., (1987) Phys. Rep., 5-6, p. 247Nishimura, J., (1967) Handbuch der Physik, 46 (2), p. 1. , Springer, BerlinArisawa, T., Fujimoto, Y., Hasegawa, S., Honda, K., Ito, H., Kopenkin, V.V., Semba, H., Strogova, O.P., (1994) Nucl. Phys., B424, p. 241Baradzei, L.T., (1992) Nucl. Phys. B, B370, p. 365Kopenkin, V., Fujimoto, Y., (1996) Nuovo Cimento C, 19, p. 1017Moriya, M., (1997), Master thesis, Waseda UniversityBarroso, S.L.C., Fujimoto, Y., Kopenkin, V., Moriya, M., Navia, C., Ohsawa, A., Shibuya, E.H., Tamada, M., (1997) Nucl. Phys. B (Proc. Suppl.), 52 B, p. 201(1997) Proceedings of the 25th International Cosmic Ray Conference, 6, p. 41Hama, Y., Paiva, S., (1997) Phys. Rev. Lett., 78, p. 3070Tamada, M., (1995) J. Phys. G, 21, p. 1387Knapp, J., Heck, D., Schatz, G., (1996) Report of Institut für Kernphysik, Forschungszentrum Karlsruhe, , Wissenchafteliche Berichte FZKA 5828Harr, R., Liapis, C., Karchin, P., Biino, C., Erhan, S., Hofmann, W., Kreuzer, P., Zweizig, J., (1997) Phys. Lett. B, 401, p. 176Tamada, M., Kopenkin, V.V., (1997) Nucl. Phys., B494, p. 3Ohsawa, A., (1971) Prog. Theor. Phys. Suppl., 47, p. 180Gaisser, T.K., (1990) Cosmic Rays and Particle Physics, , Cambridge University Press, Cambridge, Englan

    Was the GLE on May 17, 2012 linked with the M5.1-class flare the first in the 24th solar cycle?

    Full text link
    On May 17, 2012 an M5.1-class flare exploded from the sun. An O-type coronal mass ejection (CME) was also associated with this flare. There was an instant increase in proton flux with peak at 100\geq 100 MeV, leading to S2 solar radiation storm level. In about 20 minutes after the X-ray emission, the solar particles reached the Earth.It was the source of the first (since December 2006) ground level enhancement (GLE) of the current solar cycle 24. The GLE was detected by neutron monitors (NM) and other ground based detectors. Here we present an observation by the Tupi muon telescopes (Niteroi, Brazil, 220.9S22^{0}.9 S, 430.2W43^{0}.2 W, 3 m above sea level) of the enhancement of muons at ground level associated with this M5.1-class solar flare. The Tupi telescopes registered a muon excess over background 20%\sim 20\% in the 5-min binning time profile. The Tupi signal is studied in correlation with data obtained by space-borne detectors (GOES, ACE), ground based neutron monitors (Oulu) and air shower detectors (the IceTop surface component of the IceCube neutrino observatory). We also report the observation of the muon signal possibly associated with the CME/sheath striking the Earth magnetosphere on May 20, 2012. We show that the observed temporal correlation of the muon excess observed by the Tupi muon telescopes with solar transient events suggests a real physical connection between them. Our observation indicates that combination of two factors, the low energy threshold of the Tupi muon telescopes and the location of the Tupi experiment in the South Atlantic Anomaly region, can be favorable in the study and detection of the solar transient events. Our experiment provides new data complementary to other techniques (space and ground based) in the study of solar physics.Comment: 9 pages, 10 figure
    corecore