1,283 research outputs found

    Bose-Hubbard model on a star lattice

    Get PDF
    We analyze the Bose-Hubbard model of hardcore bosons with nearest neighbor hopping and repulsive interactions on a star lattice using both quantum Monte Carlo simulation and dual vortex theory. We obtain the phase diagram of this model as a function of the chemical potential and the relative strength of hopping and interaction. In the strong interaction regime, we find that the Mott phases of the model at 1/2 and 1/3 fillings, in contrast to their counterparts on square, triangular, and Kagome lattices, are either translationally invariant resonant valence bond (RVB) phases with no density-wave order or have coexisting density-wave and RVB orders. We also find that upon increasing the relative strength of hopping and interaction, the translationally invariant Mott states undergo direct second order superfluid-insulator quantum phase transitions. We compute the critical exponents for these transitions and argue using the dual vortex picture that the transitions, when approached through the tip of the Mott lobe, belong to the inverted XY universality class.Comment: 10 pages, 18 figures, minor changes, two references adde

    Superfluid-Insulator transitions of bosons on Kagome lattice at non-integer fillings

    Get PDF
    We study the superfluid-insulator transitions of bosons on the Kagome lattice at incommensurate filling factors f=1/2 and 2/3 using a duality analysis. We find that at f=1/2 the bosons will always be in a superfluid phase and demonstrate that the T_3 symmetry of the dual (dice) lattice, which results in dynamic localization of vortices due to the Aharanov-Bohm caging effect, is at the heart of this phenomenon. In contrast, for f=2/3, we find that the bosons exhibit a quantum phase transition between superfluid and translational symmetry broken Mott insulating phases. We discuss the possible broken symmetries of the Mott phase and elaborate the theory of such a transition. Finally we map the boson system to a XXZ spin model in a magnetic field and discuss the properties of this spin model using the obtained results.Comment: 10 pages, 8 figures, a few typos correcte

    Dipolar spin correlations in classical pyrochlore magnets

    Full text link
    We study spin correlations for the highly frustrated classical pyrochlore lattice antiferromagnets with O(N) symmetry in the limit T->0. We conjecture that a local constraint obeyed by the extensively degenerate ground states dictates a dipolar form for the asymptotic spin correlations, at all N \ne 2 for which the system is paramagnetic down to T=0. We verify this conjecture in the cases N=1 and N=3 by simulations and to all orders in the 1/N expansion about the solvable N=infinity limit. Remarkably, the N=infinity formulae are an excellent fit, at all distances, to the correlators at N=3 and even at N=1. Thus we obtain a simple analytical expression also for the correlations of the equivalent models of spin ice and cubic water ice, I_h.Comment: 4 pages revtex

    Valence Bond Solids and Their Quantum Melting in Hard-Core Bosons on the Kagome Lattice

    Get PDF
    Using large scale quantum Monte Carlo simulations and dual vortex theory we analyze the ground state phase diagram of hard-core bosons on the kagome lattice with nearest neighbor repulsion. In contrast to the case of a triangular lattice, no supersolid emerges for strong interactions. While a uniform superfluid prevails at half-filling, two novel solid phases emerge at densities ρ=1/3\rho=1/3 and ρ=2/3\rho=2/3. These solids exhibit an only partial ordering of the bosonic density, allowing for local resonances on a subset of hexagons of the kagome lattice. We provide evidence for a weakly first-order phase transition at the quantum melting point between these solid phases and the superfluid.Comment: 4 pages, 7 figure

    Universal behaviour of ideal and interacting quantum gases in two dimensions

    Full text link
    I discuss ideal and interacting quantum gases obeying general fractional exclusion statistics. For systems with constant density of single-particle states, described in the mean field approximation, the entropy depends neither on the microscopic exclusion statistics, nor on the interaction. Such systems are called {\em thermodynamically equivalent} and I show that the microscopic reason for this equivalence is a one-to-one correspondence between the excited states of these systems. This provides a method, different from the bosonisation technique, to transform between systems of different exclusion statistics. In the last section the macroscopic aspects of this method are discussed. In Appendix A I calculate the fluctuation of the ground state population of a condensed Bose gas in grandcanonical ensemble and mean field approximation, while in Appendix B I show a situation where although the system exhibits fractional exclusion properties on microscopic energy intervals, a rigorous calculation of the population of single particle states reveals a condensation phenomenon. This also implies a malfunction of the usual and simplified calculation technique of the most probable statistical distributions.Comment: About 14 journal pages, with 1 figure. Changes: Body of paper: same content, with slight rephrasing. Apendices are new. In the original submission I just mentioned the condensation, which is now detailed in Appendix B. They were intended for a separate paper. Reason for changes: rejection from Phys. Rev. Lett., resubmission to J. Phys. A: Math. Ge

    On the isospin dependence of the mean spin-orbit field in nuclei

    Get PDF
    By the use of the latest experimental data on the spectra of 133^{133}Sb and 131^{131}Sn and on the analysis of properties of other odd nuclei adjacent to doubly magic closed shells the isospin dependence of a mean spin-orbit potential is defined. Such a dependence received the explanation in the framework of different theoretical approaches.Comment: 52 pages, Revtex, no figure

    On the difference between proton and neutron spin-orbit splittings in nuclei

    Get PDF
    The latest experimental data on nuclei at 132^{132}Sn permit us for the first time to determine the spin-orbit splittings of neutrons and protons in identical orbits in this neutron-rich doubly-magic region and compare the case to that of 208^{208}Pb. Using the new results, which are now consistent for the two neutron-rich doubly magic regions, a theoretical analysis defines the isotopic dependence of the mean field spin-orbit potential and leads to a simple explicit expression for the difference between the spin-orbit splittings of neutrons and protons. The isotopic dependence is explained in the framework of different theoretical approaches.Comment: 8 pages, revte

    An embedding potential definition of channel functions

    Full text link
    We show that the imaginary part of the embedding potential, a generalised logarithmic derivative, defined over the interface between an electrical lead and some conductor, has orthogonal eigenfunctions which define conduction channels into and out of the lead. In the case of an infinitely extended interface we establish the relationship between these eigenfunctions and the Bloch states evaluated over the interface. Using the new channel functions, a well-known result for the total transmission through the conductor system is simply derived.Comment: 14 pages, 2 figure

    Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments

    Full text link
    Today's experimental noisy quantum processors can compete with and surpass all known algorithms on state-of-the-art supercomputers for the computational benchmark task of Random Circuit Sampling [1-5]. Additionally, a circuit-based quantum simulation of quantum information scrambling [6], which measures a local observable, has already outperformed standard full wave function simulation algorithms, e.g., exact Schrodinger evolution and Matrix Product States (MPS). However, this experiment has not yet surpassed tensor network contraction for computing the value of the observable. Based on those studies, we provide a unified framework that utilizes the underlying effective circuit volume to explain the tradeoff between the experimentally achievable signal-to-noise ratio for a specific observable, and the corresponding computational cost. We apply this framework to recent quantum processor experiments of Random Circuit Sampling [5], quantum information scrambling [6], and a Floquet circuit unitary [7]. This allows us to reproduce the results of Ref. [7] in less than one second per data point using one GPU.Comment: 14 pages, 13 figure

    Bosonic and fermionic single-particle states in the Haldane approach to statistics for identical particles

    Full text link
    We give two formulations of exclusion statistics (ES) using a variable number of bosonic or fermionic single-particle states which depend on the number of particles in the system. Associated bosonic and fermionic ES parameters are introduced and are discussed for FQHE quasiparticles, anyons in the lowest Landau level and for the Calogero-Sutherland model. In the latter case, only one family of solutions is emphasized to be sufficient to recover ES; appropriate families are specified for a number of formulations of the Calogero-Sutherland model. We extend the picture of variable number of single-particle states to generalized ideal gases with statistical interaction between particles of different momenta. Integral equations are derived which determine the momentum distribution for single-particle states and distribution of particles over the single-particle states in the thermal equilibrium.Comment: 6 pages, REVTE
    corecore