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Using large scale quantum Monte Carlo simulations and dual vortex theory, we analyze the ground state
phase diagram of hard-core bosons on the kagome lattice with nearest-neighbor repulsion. In contrast with
the case of a triangular lattice, no supersolid emerges for strong interactions. While a uniform superfluid
prevails at half filling, two novel solid phases emerge at densities � � 1=3 and � � 2=3. These solids
exhibit an only partial ordering of the bosonic density, allowing for local resonances on a subset of
hexagons of the kagome lattice. We provide evidence for a weakly first-order phase transition at the
quantum melting point between these solid phases and the superfluid.
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Current interest in microscopic models of frustrated
quantum systems stems largely from the search for exotic
quantum phases and spin liquid states. In general, geomet-
ric frustration tends to destabilize quasiclassical order,
possibly allowing for nontrivial quantum states and novel
critical phenomena to emerge in such systems. One intri-
guing approach addresses classically frustrated (Ising)
models perturbed by quantum (off-diagonal) interactions
[1]. The behavior of classically disordered, degenerate
ground state manifolds upon application of a U(1) sym-
metric perturbation (e.g., ferromagnetic exchange) is of
special interest, as experimental advances in the construc-
tion and control of atomic gases in optical lattices have
opened up the possibility of designing such Hamiltonians
for ultracold bosons. In particular, it has recently been
shown how an optical kagome lattice can be constructed
using a triple laser beam design [2], which could permit
access to parameter regions of interest in the search for
exotic quantum phenomena.

In this Letter, we consider a model of bosons on the
kagome lattice in the strongly interacting regime, corre-
sponding to the hard-core limit of the Bose-Hubbard
Hamiltonian discussed in Ref. [2],
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hi;ji
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where byi (bi) creates (destroys) a particle on site i, t > 0
denotes the nearest-neighbor hopping, V > 0 is the
nearest-neighbor repulsion, and � is the chemical poten-
tial. This model can also be mapped onto the spin-1=2 XXZ
model [3], allowing for an interpretation of our results in
terms of both bosons and quantum spins. We report results
on the ground state phase diagram obtained from a com-
bined analysis of large scale quantum Monte Carlo (QMC)
simulations using the stochastic series expansion technique
[4,5] and phenomenological dual vortex theory (DVT)
[6,7]. We find that, in contrast to previous theoretical

expectations, a uniform superfluid persists at half filling
for all values of V=t. In addition, for fillings � � 1=3 and
2=3, we find evidence for valence-bond solid (VBS) phases
where bosons are delocalized around a subset of hexagons
(see Fig. 1). We find that the quantum melting of both VBS
phases into the superfluid occurs at weakly first-order
quantum phase transitions.

Past work on the ground state phase diagram of this
model has been controversial and intriguing: Spin-wave
calculations suggest that a supersolid state may emerge
around half filling (� � 1=2) at � � 2V for t=V < 0:5 [8].
However, these results are not conclusive, since strong
quantum fluctuations may destroy the long-range order
assumed within mean-field theory [8]. More recently, con-
sideration of the large classical degeneracy [9] at t � 0 has
led to the proposal of several exotic Mott-insulating states
(e.g., VBSs or disordered quantum liquids) at half filling
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FIG. 1 (color online). Ground state phase diagram of hard-core
bosons on the kagome lattice (inset). The primitive vectors a1

and a2 are constrained on a (periodic) torus spanned by L1 �
n1 � a1 and L2 � n2 � a2 (where a1 � a2 � 2). The circles
illustrate the subset of hexagons with a resonating boson occu-
pation of three bosons per hexagon in the � � 2=3 solid. The
remaining bosons localize to form a solid backbone on the sites
that do not belong to any of these hexagons.
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[10]. Very little work has been done to elucidate the nature
of the phase diagram away from half filling.

Using QMC simulations, we have obtained the phase
diagram ofHb, illustrated in Fig. 1. The lattice is empty for
� � �4t and completely filled for � � 4�t� V�. For
large values of t=V, the bosons are superfluid, with a finite
value of the superfluid density �s, which we measure
through winding number fluctuations Wa1;2

[11] in each of
the lattice directions as �s��hW2

a1
i�hW2

a2
i�=�2�t�, where

� is the inverse temperature. In agreement with mean-field
theory, we find that two solid phases with rational fillings
� � 1=3 and 2=3 emerge at smaller t=V. Both are charac-
terized by finite values (in the thermodynamic limit) of the
density structure factor per site S�q�=N � h�q��

y
q�i and

the static susceptibility per site ��q�=N � h
R
d��q��

y
q0i,

where �q� � �1=N�
P
i�i� exp�iqri� and �i� is the boson

density at site i and imaginary time �, at wave vectors q �
Q 	 �2�=3; 0�. This can be seen in Fig. 2, which shows
peaks at the corners of the Brillouin zone (BZ) in the solid
phase that are absent in the superfluid.

Decreasing t=V at half filling (�=V � 2), the value of �s
in the limit V ! 1 (t � 1) takes on about 54% of its value
at the XY point, �s�V � 0� 
 0:55 (see Fig. 3). This is in
stark contrast to the triangular lattice case, where �S�V !
1� approaches only about 4% of its value at the XY point
[12]. We do not observe evidence of long-range order in the
density structure factor, thus eliminating the possibility of
a supersolid phase as found recently on the triangular
lattice at small values of t=V [12–14]. In addition, we do
not observe any Bragg peaks in the bond-bond structure
factor (defined below), precluding the existence of any
VBS order. The persistence of the superfluid phase can
be understood from a duality analysis of the boson problem
in terms of vortices on the dual dice lattice, which interact
with a dual magnetic flux of 2�p=q � � (for boson filling
� � p=q � 1=2) [6,7]. It has been shown that for the dice
lattice at � � 1=2 the vortices undergo dynamic localiza-
tion due to an Aharanov-Bohm caging effect [15] that

suppresses the condensation of vortices and leads to a
persistence of superfluidity [7].

At boson fillings � � 1=3 and 2=3, the model in the
large V=t limit can be mapped to a quantum dimer model
on the hexagonal lattice, where the occupied (unoccupied)
sites at � � 1=3 (� � 2=3) correspond to the presence of
dimers. In the classical limit (V=t � 1), all of the dimer
coverings are degenerate. When V=t becomes large but
finite, the degeneracy is partially lifted, and the remaining
dimer kinetic energy promotes the so-called plaquette
order [16,17]. In terms of bosons, for example, at � �
2=3, every third site on the kagome lattice forms a solid
backbone of occupied sites, whereas the remaining bosons
locally resonate around every third hexagon, as shown in
Fig. 1. DVT at � � 1=3 and 2=3 predicts several possible
valence-bond order phases on the kagome lattice depend-
ing on the parameters of the effective field theory of the
dual vortices. A set of mean-field states obtained by DVT
are found to have the same spatial symmetry as the state
described above. We expect that the kinetic energy gain
would prefer the phase with the resonating hexagons. Our
QMC data on S�q� and ��q� are consistent with these
expectations; in particular, Bragg peaks are observed at
the correct positions, as shown in Fig. 2. We find further
QMC evidence for such resonances by measurements of
the hexagon occupation. Denoting by Pn the measured
fraction of hexagons with n bosons, we obtain P0;1;2 <
10�3, P3 � 0:33�1�, P4 � 0:38�2�, P5 � 0:225�4�, and
P6 � 0:052�4� at various points inside the � � 2=3 solid,
which compare well to the expected values Pen of Pe0;1;2 �
0, Pe3 � 5=12, Pe4;5 � 1=4, and Pe6 � 1=12 for the resonat-
ing state. Finally, we find sharp peaks in the bond struc-
ture factor and corresponding susceptibility at the cor-
ners of the kagome BZ. Figure 4 shows the finite-size
scaling properties of the structure factor Sb�q�=N �
hBq�B

y
q�i at q � Q, where Bq���1=N�

P
�B��exp�iqr��

summed over the bond index � connecting spins i and j,

FIG. 2. Contour plots of the structure factor (left panel) and the
static susceptibility (right panel) in the VBS close to the phase
boundary for �=V � 11=12, t=V � 1=8, and T � t=24. The BZ
of the underlying triangular lattice is hexagonal (see Fig. 1), with
corners at Q � �2�=3; 0� and symmetry related momenta. In
both panels, the axes range from �2� to 2�, and ferromagnetic
peaks at reciprocal lattice vectors have been suppressed.
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FIG. 3 (color online). The superfluid density �s as a function
of t=V at half filling for �=V � 2 and T � t=5. The lattice linear
dimension is denoted L (see Fig. 1), so that the number of sites is
N � L� L� 3. Inset: The static structure factor S�Q�, super-
fluid density �s, and boson density � as a function of �=V at
t=V � 1=10, for L � 24 and T � t=24.
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and B��i;j�;� � t�byi bj � bib
y
j �� is the off-diagonal bond

operator at imaginary time �. The nonzero intercept of
the extrapolation in Fig. 4 exhibits long-range order in the
bond-bond correlations [18]. The real-space correlations
Cb�r��r	�� h�1�

R
B��d��B0��

1
�

R
B	�d��B0�i, where

B0 denotes the background bond strength, confirm the ex-
pected preponderance of resonating bonds on hexagons as
illustrated in Fig. 5.

As shown in Fig. 2, ‘‘bow-tie’’ features appear in S�q�
and ��q�. At low temperatures and close to q0 �

�0; 2�=
���
3
p
� and equivalent positions, these can be fitted

to S�q0 � q� � �q2
k
� 
2�=

�����������������
q2 � 
2

p
and ��q0 � q� �

�q2
k
� 
2�=�q2 � 
2�, where qk is a component of q along

the directions of bow ties, and 
 is interpreted as an inverse
correlation length. The bow ties are present in the solid
phase and also in the superfluid phase near the transition,
albeit with larger values of 
. Implications of this bow-tie
structure will be discussed elsewhere [5].

In contrast to the case of a triangular lattice [13], we do
not observe any obvious discontinuities that would indicate
a first-order phase transition from the solid phases into the
superfluid. An example is illustrated in Fig. 3, for �s, S�Q�,
and � along a cut at fixed t=V from the superfluid into the
� � 1=3 solid. Landau-Ginzburg-Wilson (LGW) theory
forbids a generic continuous transition between a solid
and a superfluid, as different symmetries of Hb are broken
in both phases. Possible explanations of our observation

would thus include (i) a weakly first-order superfluid-solid
transition, at which the correlation length stays finite but
exceeds the linear size of the QMC cells; (ii) a narrow
intermediate supersolid regime; or (iii) a non-LGW con-
tinuous transition, such as the recently proposed decon-
fined quantum criticality scenarios [20,21]. To discern
between these possibilities, we obtained detailed data and
performed a finite-size scaling (FSS) study and analysis of
energy histograms over the melting transition region.

We look first at the FSS behavior. For a two-dimensional
system, the following FSS relations apply for a continu-
ous solid to superfluid quantum phase transition. The su-
perfluid density scales as �s�L

�zF�s�L
1=��Kc�K�;

�=Lz�, where L denotes the linear system size, z the
dynamical critical exponent, � the correlation length
exponent, Kc � K the distance to the critical point in
terms of the control parameter K, such as t=V or �=V,
and F�s the corresponding scaling function. Similarly,
S�Q� � L2�z��FS�L

1=��Kc � K�; �=L
z� and ��Q� �

L2��F��L1=��Kc � K�; �=Lz�, where � is the anomalous
exponent. From these scaling relations, given appropriate
values for �t=V�c and the critical exponents, QMC data for
different system sizes should follow universal curves
F�s��; A� and F���; A�, if the transition is continuous.

QMC data were obtained over the melting transition,
focusing on a fixed value of �=V � 11=12, which is close
to the largest extend of the � � 1=3 solid. As discussed
below, the scaling of the QMC data appears to be consis-
tent with z � 1, so that most simulations were performed
for fixed aspect ratios A � �=L. As shown in Fig. 6, the
data for �sL appear to collapse very well for �t=V�c �
0:128 21�2�, z � 1, and � � 0:43. The data for ��Q� also
collapse well for �t=V�c � 0:128 27�4�, � � 0:45, and � �
�0:50�15�. The two independent estimates for �t=V�c are
sufficiently close in value to confirm a direct transition and
make scenario (ii) seem unlikely. This is also consistent
with the discovery of similar � values on both sides of the
transition. Based on the value of � � �0:50�15�, we also
find the scaling of S�Q� to be consistent with a dynamical
exponent z � 1:0�2�.
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FIG. 5 (color online). The correlation function Cb�r1 � r	�
between the bond indicated by large (red) text and the other
bonds for L � 24, �=V � 11=12, t=V � 1=8, and T � t=12.
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FIG. 4 (color online). Finite-size scaling of the bond structure
factor Sb�Q� in the VBS phase for �=V � 11=12, t=V � 1=8,
and T � t=12. Error bars are smaller than the symbol sizes, and
the line shows a linear extrapolation to the thermodynamic limit.
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Even though the FSS analysis appears to be consistent
with a continuous quantum critical point in most respects, a
negative value of � is unusual, and one may be inclined to
interpret this as an indication of very weak first-order
behavior. We explore this possibility in further detail by
studying histograms of physical quantities in the transition
region. In Fig. 7, one can see double-peaked structures
developing in histograms of the kinetic energy over the
melting transition for sufficiently large system sizes. We
believe that this additional observation provides cogent
evidence for scenario (i); i.e., the melting transition studied
here is indeed very weakly first-order.

In conclusion, we have studied hard-core bosons on the
kagome lattice with nearest-neighbor repulsion. At half
filling, the model remains in a uniform superfluid phase
for all values of V=t, and no supersolid emerges. For the
solid phases at filling fractions 1=3 and 2=3, we find
evidence for an exotic insulator with partially delocalized
bosons occurring on a six-site hexagonal structure on the
kagome lattice. Although the superfluid-solid melting tran-
sition appears naively to have the scaling properties of an
unusual continuous quantum critical point, we find clear
indication of weak first-order behavior from double-
peaked histograms of the kinetic energy. The apparent
weakness of this transition is in stark contrast to examples
of strong first-order quantum melting transitions in related
models [13]. An understanding of this contrasting behavior
may have critical importance in the search for unconven-
tional quantum criticality in this class of models and
clearly deserves further study in the future.
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work [22] and thank its authors for correspondence.
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FIG. 7 (color online). Distribution (arbitrary units) of the
kinetic energy close to the transition point for various system
sizes, �=V � 11=12, t=V � 1=7:796, and T � t=60. As the
system size increases, the double-peaked features become
more pronounced.

PRL 97, 147202 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
6 OCTOBER 2006

147202-4


