26 research outputs found

    Influence of band width on the scattered ion yield spectra of a He + Ion by resonant or quasi-resonant charge exchange neutralization

    Get PDF
    The influence of the band structure, especially the bandwidth, on the scattered ion yield spectra of a He+ ion by the resonant or quasi-resonant neutralization was theoretically examined using quantum rate equations. When calculating the scattered ion yield spectra of He+ to simulate the experimental data, we observed that the band structure, especially the bandwidth, had a strong influence on the spectra at relatively low incident He+ ion energies of less than several hundred eV. Through many simulations, it was determined that theoretical calculations that include bandwidth calculation can simulate or reproduce the experimentally observed spectra of He+-In, He+-Ga, and He+-Sn systems. In contrast, simulations not including bandwidth simulation could neither reproduce nor account for such spectra. Furthermore, the calculated ion survival probability (ISP) at low incident ion energies tended to decrease with increasing bandwidth. This decrease in ISP probably corresponds to the relatively small scattered ion yield usually observed at low incident ion energies. Theoretically, such a decrease indicates that a He+ ion with a low incident energy can be easily neutralized on the surface when the bandwidth is large
    corecore