78 research outputs found

    Third and fourth degree collisional moments for inelastic Maxwell models

    Full text link
    The third and fourth degree collisional moments for dd-dimensional inelastic Maxwell models are exactly evaluated in terms of the velocity moments, with explicit expressions for the associated eigenvalues and cross coefficients as functions of the coefficient of normal restitution. The results are applied to the analysis of the time evolution of the moments (scaled with the thermal speed) in the free cooling problem. It is observed that the characteristic relaxation time toward the homogeneous cooling state decreases as the anisotropy of the corresponding moment increases. In particular, in contrast to what happens in the one-dimensional case, all the anisotropic moments of degree equal to or less than four vanish in the homogeneous cooling state for d2d\geq 2.Comment: 15 pages, 3 figures; v2: addition of two new reference

    Hydrodynamics of driven granular gases

    Get PDF
    Hydrodynamic equations for granular gases driven by the Fokker-Planck operator are derived. Transport coefficients appeared in Navier-Stokes order change from the values of a free cooling state to those of a steady state.Comment: 5 pages, 3 figure

    Polydisperse Adsorption: Pattern Formation Kinetics, Fractal Properties, and Transition to Order

    Full text link
    We investigate the process of random sequential adsorption of polydisperse particles whose size distribution exhibits a power-law dependence in the small size limit, P(R)Rα1P(R)\sim R^{\alpha-1}. We reveal a relation between pattern formation kinetics and structural properties of arising patterns. We propose a mean-field theory which provides a fair description for sufficiently small α\alpha. When α\alpha \to \infty, highly ordered structures locally identical to the Apollonian packing are formed. We introduce a quantitative criterion of the regularity of the pattern formation process. When α1\alpha \gg 1, a sharp transition from irregular to regular pattern formation regime is found to occur near the jamming coverage of standard random sequential adsorption with monodisperse size distribution.Comment: 8 pages, LaTeX, 5 figures, to appear in Phys.Rev.

    Atomistic mechanism of friction force independence on the normal load and other friction laws for dynamic structural superlubricity

    Full text link
    We explore dynamic structural superlubricity for the case of a relatively large contact area, where the friction force is proportional to the area (exceeding 100nm2\sim 100\,nm^2) experimentally, numerically, and theoretically. We use a setup comprised of two molecular smooth incommensurate surfaces -- graphene-covered tip and substrate. The experiments and MD simulations demonstrate independence of the friction force on the normal load, for a wide range of normal loads and relative surface velocities. We propose an atomistic mechanism of this phenomenon, associated with synchronic out-of-plane surface fluctuations of thermal origin, and confirm it by numerical experiments. Based on this mechanism, we develop a theory for this type of superlubricity and show that friction force increases linearly with increasing temperature and relative velocity, for velocities, larger than a threshold velocity. The MD results are in a fair agreement with predictions of the theory.Comment: Accepted to Physical Review Letters on November 14, 202

    Generalized Smoluchowski equation with correlation between clusters

    Full text link
    In this paper we compute new reaction rates of the Smoluchowski equation which takes into account correlations. The new rate K = KMF + KC is the sum of two terms. The first term is the known Smoluchowski rate with the mean-field approximation. The second takes into account a correlation between clusters. For this purpose we introduce the average path of a cluster. We relate the length of this path to the reaction rate of the Smoluchowski equation. We solve the implicit dependence between the average path and the density of clusters. We show that this correlation length is the same for all clusters. Our result depends strongly on the spatial dimension d. The mean-field term KMFi,j = (Di + Dj)(rj + ri)d-2, which vanishes for d = 1 and is valid up to logarithmic correction for d = 2, is the usual rate found with the Smoluchowski model without correlation (where ri is the radius and Di is the diffusion constant of the cluster). We compute a new rate: the correlation rate K_{i,j}^{C} (D_i+D_j)(r_j+r_i)^{d-1}M{\big(\frac{d-1}{d_f}}\big) is valid for d \leq 1(where M(\alpha) = \sum+\infty i=1i\alphaNi is the moment of the density of clusters and df is the fractal dimension of the cluster). The result is valid for a large class of diffusion processes and mass radius relations. This approach confirms some analytical solutions in d 1 found with other methods. We also show Monte Carlo simulations which illustrate some exact new solvable models

    Coefficient of normal restitution of viscous particles and cooling rate of granular gases

    Full text link
    We investigate the cooling rate of a gas of inelastically interacting particles. When we assume velocity dependent coefficients of restitution the material cools down slower than with constant restitution. This behavior might have large influence to clustering and structure formation processes.Comment: 3 figures, Phys. Rev. E (in press

    Hydrodynamic modes, Green-Kubo relations, and velocity correlations in dilute granular gases

    Full text link
    It is shown that the hydrodynamic modes of a dilute granular gas of inelastic hard spheres can be identified, and calculated in the long wavelength limit. Assuming they dominate at long times, formal expressions for the Navier-Stokes transport coefficients are derived. They can be expressed in a form that generalizes the Green-Kubo relations for molecular systems, and it is shown that they can also be evaluated by means of NN-particle simulation methods. The form of the hydrodynamic modes to zeroth order in the gradients is used to detect the presence of inherent velocity correlations in the homogeneous cooling state, even in the low density limit. They manifest themselves in the fluctuations of the total energy of the system. The theoretical predictions are shown to be in agreement with molecular dynamics simulations. Relevant related questions deserving further attention are pointed out

    Scaling of Transport Coefficients of Porous Media under Compaction

    Full text link
    Porous sediments in geological systems are exposed to stress by the above-laying mass and consequent compaction, which may be significantly nonuniform across the massif. We derive scaling laws for the compaction of sediments of similar geological origin. With these laws, we evaluate the dependence of the transport properties of a fluid-saturated porous medium (permeability, effective molecular diffusivity, hydrodynamic dispersion, electrical and thermal conductivities) on its porosity. In particular, we demonstrate that the assumption of a uniform geothermal gradient is not adequate for systems with nonuniform compaction and show the importance of the derived scaling laws for mathematical modelling of methane hydrate deposits; these deposits are believed to have potential for impact on global climate change and Glacial-Interglacial cycles.Comment: 6 pages, 2 figure

    Fractal dimension and degree of order in sequential deposition of mixture

    Full text link
    We present a number models describing the sequential deposition of a mixture of particles whose size distribution is determined by the power-law p(x)αxα1p(x) \sim \alpha x^{\alpha-1}, xlx\leq l . We explicitly obtain the scaling function in the case of random sequential adsorption (RSA) and show that the pattern created in the long time limit becomes scale invariant. This pattern can be described by an unique exponent, the fractal dimension. In addition, we introduce an external tuning parameter beta to describe the correlated sequential deposition of a mixture of particles where the degree of correlation is determined by beta, while beta=0 corresponds to random sequential deposition of mixture. We show that the fractal dimension of the resulting pattern increases as beta increases and reaches a constant non-zero value in the limit β\beta \to \infty when the pattern becomes perfectly ordered or non-random fractals.Comment: 16 pages Latex, Submitted to Phys. Rev.

    Cooling dynamics of a dilute gas of inelastic rods: a many particle simulation

    Full text link
    We present results of simulations for a dilute gas of inelastically colliding particles. Collisions are modelled as a stochastic process, which on average decreases the translational energy (cooling), but allows for fluctuations in the transfer of energy to internal vibrations. We show that these fluctuations are strong enough to suppress inelastic collapse. This allows us to study large systems for long times in the truely inelastic regime. During the cooling stage we observe complex cluster dynamics, as large clusters of particles form, collide and merge or dissolve. Typical clusters are found to survive long enough to establish local equilibrium within a cluster, but not among different clusters. We extend the model to include net dissipation of energy by damping of the internal vibrations. Inelatic collapse is avoided also in this case but in contrast to the conservative system the translational energy decays according to the mean field scaling law, E(t)\propto t^{-2}, for asymptotically long times.Comment: 10 pages, 12 figures, Latex; extended discussion, accepted for publication in Phys. Rev.
    corecore