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Hydrodynamic equations for granular gases driven by the Fokker-Planck operator are derived. Transport
coefficients appeared in Navier-Stokes order change from the values of a free-cooling state to those of a steady
state. The mismatch between the granular temperature and the constant temperature of the heat bath produces
a nontrivial steady state.
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I. INTRODUCTION

The gas kinetic theory of elastic particles played impor-
tant roles in history of statistical mechanics@1,2#. When
there are inelastic interactions among particles, the behavior
of collections of particles is completely different from that of
elastic particles: There are no equilibrium states and any spa-
tially homogeneous states are no longer stable. Such a col-
lection of particles having inelastic interactions is called the
granular gas, whose physical realization can be observed in
rings of planets, small planets, suspended particles in fluid-
ized beds, aerosols, and rapid granular flows, etc.@3#.

A typical example of granular gases can be found in aero-
sols or suspensions, etc., in which the buoyancy is balanced
with gravity @4,5#. In dense suspensions the hydrodynamic
interaction among particles are important@6#, but effects of
the air may be regarded as a thermostat driven by the Lange-
vin forces in dilute suspensions. Most researches for granular
gases are interested in undriven systems which are difficult
to be achieved in actual experiences. We believe that more
systematic studies for driven granular gases are required.
Montanero and Santos analyzed statistical properties of the
homogeneous state and hydrodynamics of granular gases, the
white noise thermostat, and the Gaussian thermostat@7,8#.
Carrillo et al. @9# and Pagnaniet al. @10# analyzed granular
gases in driven systems by the Langevin force which in-
cludes both the white noise and the friction force in propor-
tion to the velocity of particles, but they are not interested in
hydrodynamics of such a granular fluid. Since we believe
that the model driven by such a thermostat, we call the
Langevin thermostat, can describe physical situations of di-
lute suspensions, we need to clarify the properties of the
hydrodynamics of such a system. The main purpose of this
paper is to investigate the effects of Langevin thermostat for
transport coefficients

The organization of this paper is as follows. In the follow-
ing section, we introduce our model and the framework of
the Chapman-Enskog method for the analysis of granular
gases. In Sec. III, we calculate the valuables such as the
granular temperature and the fourth cumulant in a homoge-
neous state. In Sec. IV, we obtain the transport coefficients
such as the viscosity and the heat conductivity. In Sec. V, we
discuss and summarize our results.

II. FRAMEWORK

We consider rarefied gases of smooth identical particles
with the massm, the velocityv, and the diameters. The

distribution functionf (r ,v,t) in our system obeys the heated
inelastic Boltzmann equation

~] t1v•“ ! f 5J@ f , f #1LFPf , ~1!

where J@ f , f # represents the collisional integral given by
@11,12#

J@ f ,h#5sd21E dŝE dv1Q~g•ŝ!g•ŝ~e22b2121!

3 f ~r ,v,t !h~r ,v1 ,t !, ~2!

whereQ(x) is the Heaviside function,g5v2v1, and ŝ is
the unit vector along the line connecting centers of mass of
contacting particles. The operatorb21 is the inverse of the
collisional operatorb which are defined as

bg5g2~11e!~g•ŝ!ŝ, ~3!

b21g5g2
11e

e
~g•ŝ!ŝ, ~4!

where e is the coefficient of restitution which is ranged 0
,e<1. Here we assume thate is a constant for the simpli-
fication of our argument, though the actual coefficient of
restitution depends on the impact velocity@13–15#. The ef-
fects of the impact velocity dependence ofe to macroscopic
hydrodynamics can be seen in Ref.@16#. It should be noted
that the oblique impacts have important contributions in ac-
tual inelastic collisions@17,18#. We, however, assume that
the effects of inelastic oblique collision can be neglected,
which may be justified when particles are smooth hard-core
particles.

The Fokker-Planck operatorLFP in Eq. ~1! represents the
driven force coming from the Langevin force as

LFP5g0

]

]v
•FV1

TB

m

]

]vG , ~5!

where the first term and the second term represent the fric-
tional force and the thermal activation, respectively. In gen-
eral, the temperature of the heat bathTB is different from
granular temperatureT. Here, we assume thatTB is a con-
stant throughout the argument in this paper. This assumption
is justified when the influence of granular particles to the
heat bath is negligible. If there is no contribution from the
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collisional integral, the distribution function is relaxed to an
equilibrium state asf→ f eq}exp@2mV2/2TB#. We note that
the Fokker-Planck operator~5! is different from white noise
thermostatLwhite5(g0T/m)(]2/]v2) even when we neglect
the contribution the friction term. Actually, ourLFP is re-
duced tog0TB /m(]2/]v2) in such a situation with a constant
temperatureTB . We also note that the frictional force in the
first term of Eq.~5! has the inverse sign of the Gaussian
thermostat@7# LGauss52g0(]/]v)V which is also used in
simulation of molecular hydrodynamics@19#.

Hydrodynamic variables which characterize the macro-
scopic behavior of the gas are the number density, the veloc-
ity field, and the granular temperature defined by

n~r ,t !5E dvf ~r ,v,t !, ~6!

n~r ,t !u~r ,t !5E dv vf ~r ,v,t !, ~7!

d

2
n~r ,t !T~r ,t !5E dv

1

2
mV2f ~r ,v,t !, ~8!

where V[v2u. The integral of the collisional invariance
multiplied byJ@ f , f # overV is zero. Since the loss of kinetic
energy in each collision is given by

DE52
12e2

4
m~g•ŝ!2, ~9!

the following relation holds:

E dv
1

2
mV2J~ f , f !52

nd

2
Tz@ f , f #. ~10!

Here, the cooling ratez in Eq. ~10! can be evaluated approxi-
mately @12#

z.z (0)5
12e2

4d
n0~d12!S 11

3

16
a2D , ~11!

where n05p21/2nsd21(T/m)1/24Vd /(d12), with Vd
52pd/2/G(d/2). a2 is the fourth cumulant defined by

a2[
d

d12

^V4&

^V2&2
21, ~12!

^Vk&[
1

nE dVVkf ~V,t !, ~13!

which will be determined later.
The balance equations for hydrodynamic variables are

Dtn1n“•u50, ~14!

Dtui1~mn!21
“ j Pi j 50, ~15!

DtT1
2

dn
~Pi j“ jui1“•q!1Tz52g0~TB2T!, ~16!

where Dt5] t1u•“. The pressure tensorPi j and the heat
flux q are, respectively, defined by

Pi j 5mE dvViVj f ~r ,v,t !, ~17!

q5
m

2 E dvV2V f ~r ,v,t !. ~18!

We adopt the Chapman-Enskog method@2#, where space
and time dependences appear through hydrodynamic vari-
ables. The expansion parameter is regarded as the magnitude
of spatial inhomogeneity. Thus, we expandf around the ho-
mogeneous solutionf (0) as f 5 f (0)1« f (1)1«2f (2)1•••, the
time derivative is also expanded as] t5] t

(0)1«] t
(1)1•••.

Here we apply the Chapman-Enskog method for dilute
granular gases developed by Breyet al. @20,21# and Santos
@8# to driven systems. To remove the ambiguity of the distri-
bution function, we impose the solubility conditions in which
hydrodynamic variables are unchanged from the evaluation
by f (0)(v,t).

III. HOMOGENEOUS STATES

As the first step of Chapman-Enskog method, we need
also to obtain the homogeneous solution of the inelastic Bolt-
zmann equation. We usually assume the scaling form

f ~v,t !5nv0~ t !2df̃ ~c,t!, c5V/v0~ t !, ~19!

with dt5vEdt andv0(t)5A2T/m. The fourth cumulant in-
troduced in Eq.~12! for the scaling function is related to

^c4&[*dcc4 f̃ (c) as ^c4&5d(d12)(a211)/4. HerevE is
Enskog’s collision frequency, given by

vE5
d12

4
n05A2

p
Vdnsd21v0 . ~20!

For the calculation we need to obtain

mk[2E dcckJ@ f̃ , f̃ #. ~21!

The cumulants andmk can be evaluated by an approximate
expansion of Sonine polynomials@12#. For example,m2 is
evaluated as

m2.
1

2
~12e2!

Vd

A2p
S 11

3

16
a2D . ~22!

m4 is estimated as@12#

m4.A2

p
Vd~A11a2

HA2!, ~23!

with

A15
12e2

4 S d1
3

2
1e2D ,
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A25 3
128~12e2!~10d139110e2!1 1

4 ~11e!~d21!.
~24!

It should be noted that these evaluations are based on two
approximations:~i! the truncation of the first Sonine expan-
sion and~ii ! the linearization ofa2. If we adopt the first
assumption, the linearization ofa2 gives a nice evaluation
@22#. We also indicate that the direct comparison of the trans-
port coefficients obtained by the Monte Carlo simulation and
the linearized approximation gives good agreement in free-
cooling states@21#. However, nobody knows how to con-
verge the Sonine expansion for driven granular gases. Thus,
we may need to check the convergence of the Sonine expan-
sion as in the case of elastic particles@23#.

Now, let us discuss the time evolution of temperature
field. Eq. ~16! becomes

] t
(0)u52g02~2g01z!u ~25!

in the homogeneous state with the Langevin thermostat,
where u[T/TB . Assuming u5u (0)1a2u (1)1O(a2

2), Eq.
~25! is reduced to

]tu
(0)52$ĝ2~ ĝ1 ẑ !u (0)% ~26!

in the lowest order, whereĝ5g0 /vE and ẑ5(12e2)/2d.
This equation has the solution

u (0)5u`1~u (0)~0!2u`!e22(ĝ1 ẑ)t, ~27!

with u`[ĝ/(ĝ1 ẑ).
In the scaling limit, the inelastic Boltzmann equation~1!

is reduced to

Vd

A2p
]t f̃ ~c,t!5 J̃@ f̃ , f̃ #1S ĝ

u
2

m2

d
D ]

]c
•@cf̃ ~c,t!#

1
ĝ

2u

]2

]c2
f̃ ~c,t!, ~28!

where J@ f , f #5n2(s/v0(t))d21J̃@ f̃ , f̃ #. From the equation
for ^c4&5d(d12)(a211)/4 we obtain the equation of the
lowest order ofa2:

]ta254ẑ2Â11a2F19

4
ẑ24

ĝ

u
2Â2G1

3

4
ẑa2

2 ~29!

.4ẑ2Â11a2F19

4
ẑ24

ĝ

u (0)
2Â2G , ~30!

with Â158A1 /d(d12) and Â258A2 /d(d12). The solu-
tion of Eq. ~30! is given by

a2~t!.a2
`1@a2~0!2a2

`#3expF S 19

4
ẑ2Â2D t

24ĝE
0

t dt8

u (0)~t8!
G , ~31!

where

a2
`5

Â124ẑ

19

4
ẑ24~ ĝ1 ẑ !2Â2

. ~32!

Although we present the result of linearization ofa2, it is
possible to obtain the exact steady values ofu and a2 for
Eqs.~25! and ~29!. The result is presented in the Appendix,
but the differences between the exact values and the result
from linearized approximation are invisible~Fig. 1!. We also
comparea2 in Eq. ~31!andu in Eq. ~27! with the numerical
solution of Eqs.~29! and ~25! to confirm the validity of the
linearization ofa2.

IV. THE DETERMINATION OF THE TRANSPORT
COEFFICIENTS

Here, we explicitly obtain the result of the transport coef-
ficients for heated granular gases. The solutionf (0) is isotro-
pic so that the zeroth-order pressure and the heat flux are
given by

Pi j
(0)5pd i j , q(0)50, ~33!

wherep5nT is the hydrostatic pressure.
The first-order equation of the Boltzmann equation be-

comes

~] t
(0)1L2LFP! f (1)52~] t

(1)1v•“ ! f (0)

52~Dt
(1)1V•“ ! f (0), ~34!

with Dt
(1)5] t

(1)1u•“. Here the linear operatorL in Eq.
~34! is defined by

L f (1)52J@ f (0), f (1)#2J@ f (1), f (0)#. ~35!

FIG. 1. Steadya2 as a function ofe for d53 andĝ50.1. The
solid line and the solid circles represent the result of linearized
approximation and the exact one, respectively.
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Multiplying both sides of Eq.~34! by mViVj and integrat-
ing overV, we obtain

~] t
(0)1n!Pi j

(1)1P i j
(1)52pD i jkl“kul , ~36!

where

P i j
(1)[2mE dVViVjLFPf (1), ~37!

D i jkl [d ikd j l 1d i l d jk2
2

d
d i j dkl . ~38!

The solution of Eq.~36! can be written as

Pi j
(1)52hD i jkl“kul , ~39!

whereh is the viscosity.
It is possible to obtainn in Eq. ~36! through the relation

mE dVViVjL f (1)~V!5nPi j
(1). ~40!

The evaluation ofn is independent of the existence of the
thermostat. We have evaluatedn as @12#

nh* [
n

n0
.

3

4d S 12e1
2

3
dD ~11e!S 12

1

32
a2D . ~41!

With the aid of

] t
(0)Pi j

(1)5S g0

u
2g02

z

2D Pi j
(1), ~42!

Eqs.~36!–~42! lead to

h* [
h

h0
5

2g* 11

g* ~11u21!1nh* 2z* /2
, ~43!

whereg* 5g0/n0 , nh* 5n/n0, andz* 5z/n0 . h0(ĝ) is the
viscosity for e51, which is different from the valuehe of
the elastic gas ashe5h0(2ĝ* 11). We note he

55ApmT/(16Aps2) for d53 in the lowest-order Sonine
approximation@2#. The steady value ofh* is obtained when
we substituteu` anda2

` into Eq. ~43!.
Let us consider the heat flux. Multiplying both sides of

Eq. ~34! by mV2V/2 and integrating overV we obtain

~] t
(0)1n8!q(1)1Q(1)52

d12

2
~112a2!

p

m
“T

2
d12

2
a2

T2

m
“n, ~44!

where

Q(1)52
m

2 E dVV2VLFPf (1). ~45!

Here,n8 has already been calculated as@21#

nk* [
n8

n0
.

11e

d Fd21

2
1

3

16
~d18!~12e!

1
415d23~42d!e

512
a2G . ~46!

The heat flux is described by

q(1)52k“T2m“n, ~47!

whereh andk are the shear viscosity and the thermal con-
ductivity, respectively. The other transport coefficientm ap-
pears only in granular gases. Through the substitution of Eqs.
~47! and ~46! with the result ofQ(1) into Eq. ~44! we can
obtaink andm.

From the scaling form~19! the following relations should
be satisfied:

] t
(0)q(1)5~2z13g02g0 /u!k“T

1H mF3

2
z13g0~12u21!G1

kzT

n J“n. ~48!

On the other hand,P (1) andQ(1) have the relations

P i j
(1)52g0Pi j

(1), Q(1)53g0q(1). ~49!

Thus,k andm can be obtained from Eqs.~48!, ~49!, and~44!
as

k5
d12

2

112a2

n822z1g0 /u

nT

m
, ~50!

m5

kzT

n
1

d12

2
a2

T2

m

n82
3

2
z13g0 /u

. ~51!

Thus,k* 5k/k0 which is the heat conductivity normalized
by its value ofe51, k0(ĝ), is given by

k* 5S d21

d
1g* D 112a2

nl* 22z* 1g* /u
, ~52!

m* 5
k*

112a2

a2~nk* 1g* /u!

nk* 2
3

2
z* 13g* /u

. ~53!

Their steady values are evaluated replacingu anda2 by their
steady values.

Figure 2 shows the time evolution ofh* , k* , andm* for
e50.9, d53, andĝ50.1. Figure 3 shows the steady values
of h* , k* , andm* as functions ofe for d53 andĝ50.1.
As we can see from the figures,m* can be comparable with
others. This situation has not been realized for free-cooling
systems.
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V. DISCUSSION AND CONCLUSION

It is remarkable thatm* is not proportional toa2 and
keeps positive for the region ofa2,0 even in the steady
limit. This result is contradicted with the framework by San-
tos @8#. To clarify the reason, let us calculate] t

(0)q(1) in the
long time limit:

] t
(0)q(1)→2k“] t

(0)T2m“] t
(0)n

52k“@2g0TB2~2g01z!T#

5k~2g01z!“TÞ0. ~54!

Thus, ] t
(0)q(1) cannot be zero even in the long time limit.

This paradoxical situation comes from the following. In our
system, the system is heated by the constantTB uniformly,
but the temperature fieldT contains spatial fluctuations.
Thus, the mismatch of the two temperature fields survives in
the long time limit. In other words, we cannot neglect the
time derivative in the scaled inelastic Boltzmann equation
~28! to reproduce the relaxation to the steady state.

After submission of the paper, the author has realized the
existence important related papers@24–26#. In particular, the
latter two papers discussed mixtures of elastic particles and
granular particles. Their model reduces to our model when
the density ratio and the mass ratio of two kinds of particles

are large. They also include the feedback effect from granu-
lar particles to the elastic particles in the heat bath. At
present, they do not discuss the spatial fluctuations but dis-
cuss only homogeneous states. Thus, the study of such a
model will be fruitful. On the other hand, Garzo and Mon-
tanero@24# determined the transport coefficients in a heated
system by the white noise thermostat, but their result is less
related to ours, because the white noise thermostat is heated
not by TB but by the granular temparture.

We have derived hydrodynamic equations based on a sys-
tematic Chapman-Enskog method for dilute granular gases
driven by the Langevin thermostat in this paper. We have
determined all the transport coefficientsh, k, andm appear
in Navier-Stokes order as a function of the restitution coef-
ficient e.

The result is based on the linearized approximation ofa2
in the first-order truncation of Sonine expansion. Although
we believe that this approximation gives a nice evaluation,
nobody knows its theoretical background and quantitative
validity. In particular, Pagnaniet al. @10# have reported that
deviation off from the Gaussian in driven granular gases is
large. So we may need to check the convergence of the So-
nine expansion and to compare the theoretical prediction
with simulations. We also need to look for the possibility to
apply our result to explain the data in actual experiments for
suspensions.
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APPENDIX A: STEADY VALUES OF a2 AND u

As mentioned in the text, it is possible to obtain exact
steady solutions of Eqs.~25! and~29!. The result is so com-
plicated and the difference between them and the linearized
solutions is small so that we do not use the exact form for
later discussion. Here we present the exact solutions

a2
`5

16~123e212e4!

Q1
, ~A1!

where Q1573232e275e2230e4164d2ĝ18d(714e

23e2116ĝ), and

u`5
dĝQ1

Q2164d3ĝ21Q32d~11e!Q4

, ~A2!

where Q252(11e)2(19246e133e2212e316e4), Q3

58d2ĝ(1114e27e2116ĝ), andQ352281e2(28230ĝ)
2137ĝ16e3(5ĝ22)1e(121169ĝ).
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