9 research outputs found

    Mining compact predictive pattern sets using classification model

    Get PDF
    In this paper, we develop a new framework for mining predictive patterns that aims to describe compactly the condition (or class) of interest. Our framework relies on a classification model that considers and combines various predictive pattern candidates and selects only those that are important for improving the overall class prediction performance. We test our approach on data derived from MIMIC-III EHR database, focusing on patterns predictive of sepsis. We show that using our classification approach we can achieve a significant reduction in the number of extracted patterns compared to the state-of-the-art methods based on minimum predictive pattern mining approach, while preserving the overall classification accuracy of the model

    An experiment with association rules and classification: post-bagging and conviction

    Get PDF
    In this paper we study a new technique we call post-bagging, which consists in resampling parts of a classification model rather then the data. We do this with a particular kind of model: large sets of classification association rules, and in combination with ordinary best rule and weighted voting approaches. We empirically evaluate the effects of the technique in terms of classification accuracy. We also discuss the predictive power of different metrics used for association rule mining, such as confidence, lift, conviction and X². We conclude that, for the described experimental conditions, post-bagging improves classification results and that the best metric is conviction.Programa de Financiamento Plurianual de Unidades de I & D.Comunidade Europeia (CE). Fundo Europeu de Desenvolvimento Regional (FEDER).Fundação para a Ciência e a Tecnologia (FCT) - POSI/SRI/39630/2001/Class Project

    An analysis of stopping and filtering criteria for rule learning

    No full text
    Abstract. In this paper, we investigate the properties of commonly used prepruning heuristics for rule learning by visualizing them in PN-space. PN-space is a variant of ROC-space, which is particularly suited for visualizing the behavior of rule learning and its heuristics. On the one hand, we think that our results lead to a better understanding of the effects of stopping and filtering criteria, and hence to a better understanding of rule learning algorithms in general. On the other hand, we uncover a few shortcomings of commonly used heuristics, thereby hopefully motivating additional work in this area.
    corecore