3,157 research outputs found

    Baryon anomaly and strong color fields in Pb+Pb collisions at 2.76A TeV at the CERN Large Hadron Collider

    Full text link
    With the HIJING/BBbar v2.0 heavy ion event generator, we explore the phenomenological consequences of several high parton density dynamical effects predicted in central Pb+Pb collisions at the Large Hadron Collider (LHC) energies. These include (1) jet quenching due to parton energy loss (dE/dx), (2) strangeness and hyperon enhancement due to strong longitudinal color field (SCF), and (3) enhancement of baryon-to-meson ratios due to baryon-anti-baryon junctions (JJbar) loops and SCF effects. The saturation/minijet cutoff scale p0(s)and effective string tension kappa(s,A) are constrained by our previous analysis of LHC p+p data and recent data on the charged multiplicity for Pb+Pb collisions reported by the ALICE collaboration. We predict the hadron flavor dependence (mesons and baryons) of the nuclear modification factor RAA(pT)$ and emphasize the possibility that the baryon anomaly could persist at the LHC up to pT=10 GeV, well beyond the range observed in central Au+Au collisions at RHIC energies.Comment: 25 pages, 8 figures, revtex4, text modifications, added references, accepted for publication Phys. Rev. C (2011

    Soft Open Charm Production in Heavy-Ion Collisions

    Full text link
    Effects of strong longitudinal color electric fields (SCF) on the open charm production in nucleus-nucleus (A + A) collisions at 200A GeV are investigated within the framework of the HIJING-BBbar v2.0 model. A three fold increase of the effective string tension due to in medium effects in A + A collisions, results in a sizeable (60-70 percents) enhancement of the total charm production cross sections. The nuclear modification factors show a suppression at moderate transverse momentum consistent with RHIC data. At Large Hadron Collider energies the model predicts an increase of total charm production cross sections by approximately an order of magnitude.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    Two-way interplays between capital buffers, credit and output: evidence from French banks

    Get PDF
    We assess the extent to which capital buffers (the capital banks hold in excess of the regulatory minimum) exacerbate rather than reduce the cyclical behavior of credit. We empirically study the relationships between output gap, capital buffers and loan growth with firm-level data for French banks over the period 1993—2009. Our findings reveal that bank capital buffers intensify the cyclical credit fluctuations arising from the output gap developments, all the more as better quality capital is considered. Moreover, by performing Granger causality tests at the bank level, we find evidence of a two-way causality between capital buffers and loan growth, pointing to mutually reinforcing mechanisms. Overall, those empirical results lend support to a countercyclical financial regulation that focuses on highest-quality capital and aims at smoothing loan growth.Bank Capital Regulation, Procyclicality, Capital Buffers, Business Cycle Fluctuations, Basel III.

    Reply to Comment of Gazdzicki and Heinz on Strangeness Enhancement in p+Ap+A and S+AS+A

    Get PDF
    The Comment of Gazdzicki and Heinz is flawed because their assumed baryon stopping power in pApA is inconsistent with data and because they ignored half the analysis based on the VENUS model. The Comment continues the misleading presentation of strangeness enhancement by focusing on ratios of integrated yields. Those ratios discard essential experimental information on the rapidity dependence of produced Λ\Lambda and obscure discrepancies between different data sets. Our conclusion remains that the NA35 minimum bias data on p+S→Λ+Xp+S\rightarrow\Lambda +X indicate an anomalous enhancement of central rapidity strangeness in few nucleon reactions that points to non-equilibrium dynamics as responsible for strangeness enhancement in nuclear reactions.Comment: revtex file, 6 pages, submitted to Phys. Rev.

    Predictions for p+Pb at 4.4A TeV to Test Initial State Nuclear Shadowing at energies available at the CERN Large Hadron Collider

    Full text link
    Collinear factorized perturbative QCD model predictions are compared for p+Pb at 4.4A TeV to test nuclear shadowing of parton distribution at the Large Hadron Collider (LHC). The nuclear modification factor (NMF), R_{pPb}(y=0,p_T<20 GeV/c) = dn_{p Pb} /(N_{coll}(b)dn_{pp}), is computed with electron-nucleus (e+A) global fit with different nuclear shadow distributions and compared to fixed Q^2 shadow ansatz used in Monte Carlo Heavy Ion Jet Interacting Generator (HIJING) type models. Due to rapid DGLAP reduction of shadowing with increasing Q^2 used in e+A global fit, our results confirm that no significant initial state suppression is expected (R_{pPb} (p_T) = 1 \pm 0.1) in the p_T range 5 to 20 GeV/ c. In contrast, the fixed Q^2 shadowing models assumed in HIJING type models predict in the above p_T range a sizable suppression, R_{pPb} (p_T) = 0.6-0.7 at mid-pseudorapidity that is similar to the color glass condensate (CGC) model predictions. For central (N_{coll} = 12) p+ Pb collisions and at forward pseudorapidity (\eta = 6) the HIJING type models predict smaller values of nuclear modification factors (R_{pPb}(p_T)) than in minimum bias events at mid-pseudorapidity (\eta = 0). Observation of R_{pPb}(p_T= 5-20 GeV/c) less than 0.6 for minimum bias p+A collisions would pose a serious difficulty for separating initial from final state interactions in Pb+Pb collisions at LHC energies.Comment: Revised version accepted for publication; Phys. Rev. C, in press, 16 pages, 4 figures, text modifications, added references, new figure 4, revtex
    • 

    corecore