1,709 research outputs found

    Upcoming planetary missions and the applicability of high temperature superconductor bolometers

    Get PDF
    Planetary missions to Mars and beyond can last 11 years and longer, making impractical the use of stored cryogens. Passive radiative coolers and single-stage mechanical coolers remain possibilities. CRAF and CASSINI, both using the newly developed Mariner Mark 2 spacecraft, will be the next outer planet missions after Galileo; they are intended to provide information on the origin and evolution of the solar system. CRAF is a cometary rendezvous mission slated for a 1994 launch. CASSINI has been chosen by ESA and will be launched by a Titan 4/Centaur in 1996. It will fly by Jupiter in 2000, inject an ESA-supplied probe into Titan in 2002, and take data in Saturn orbit from 2002 to 2006. NASA/Goddard is currently developing a prototype Fourier transform spectrometer (CIRS) that will be proposed for the CASSINI mission. The baseline infrared detectors for CIRS are HgCdTe to 16 microns and Schwarz-type thermopiles from 16 to 1000 microns. The far infrared focal plane could be switched from thermopiles to high temperature superconductor (HTS) bolometers between now and 1996. An HTS bolometer could be built using the kinetic inductance effect, or the sharp resistance change at the transition. The transition-edge bolometer is more straightforward to implement and initial efforts at NASA/Goddard are directed to that device. A working device was made and tested in early 1989. It also has somewhat elevated noise levels below 100 Hz. Upcoming efforts will center on reducing the time constant of the HTS bolometer by attempting to deposit an HTS film on a diamond substrate, and by thinning SrTiO3 substrates. Attempts will be made to improve the film quality to reduce th 1/f noise level, and to improve the thermal isolation to increase the bolometer sensitivity. An attempt is being made to deposit good-quality HTS films on diamond films using an MOCVD technique

    Mars: Mariner 9 spectroscopic evidence for H2O ice clouds

    Get PDF
    Spectral features observed with the Mariner 9 Interferometer Spectrometer are identified as those of water ice. Measured spectra are compared with theoretical calulations for the transfer of radiation through clouds of ice particles with variations in size distribution and integrated cloud mass. Comparisons with an observed spectrum from the Tharsis Ridge region indicate water ice clouds composed of particles with mean radius 2.0 microns and integrated cloud mass 0.00005 g/sq cm

    The Nimbus 4 Infrared Spectroscopy Experiment, IRIS-D. Part 1: Calibrated Thermal Emission Spectra

    Get PDF
    Calibrated infrared emission spectra of earth and atmosphere using high resolution interferometer spectrophotometer on Nimbus 4 satellit

    Stratospheric sounding by infrared heterodyne spectroscopy

    Get PDF
    Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution. The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles. Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes, and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described and applications to synthetic lines of O3, CO2, CH4 and N2O are given

    Thermal emission spectroscopy of the middle atmosphere

    Get PDF
    The general objective of this research is to obtain, via remote sensing, simultaneous measurements of the vertical distributions of stratospheric temperature, ozone, and trace constituents that participate in the catalytic destruction of ozone (NO(sub y): NO, NO2, NO3, HNO3, ClONO2, N2O5, HNO4; Cl(sub x): HOCl), and the source gases for the catalytic cycles (H2O, CH4, N2O, CF2Cl2, CFCl3, CCl4, CH3Cl, CHF2Cl, etc.). Data are collected during a complete diurnal cycle in order to test our present understanding of ozone chemistry and its associate catalytic cycles. The instrumentation employed is an emission-mode, balloon-borne, liquid-nitrogen-cooled Michelson interferometer-spectrometer (SIRIS), covering the mid-infrared range with a spectral resolution of 0.020 cm(exp -1). Cryogenic cooling combined with the use of extrinsic silicon photoconductor detectors allows the detection of weak emission features of stratospheric gaseous species. Vertical distributions of these species are inferred from scans of the thermal emission of the limb in a sequence of elevation angles. The fourth SIRIS balloon flight was carried out from Palestine, Texas on September 15-16, 1986 with 9 hours of nighttime data (40 km). High quality data with spectral resolution 0.022 cm(exp -1), were obtained for numerous limb sequences. Fifteen stratospheric species have been identified to date from this flight: five species from the NO(sub y) family (HNO3, NO2, NO, ClONO2, N2O5), plus CO2, O3, H2O, N2O, CH4, CCl3F, CCl2F2, CHF2Cl, CF4, and CCl4. The nighttime values of N2O5, ClONO2, and total odd nitrogen have been measured for the first time, and compared to model results. Analysis of the diurnal variation of N2O5 within the 1984 and 1986 data sets, and of the 1984 ClONO2 measurements, were presented in the literature. The demonstrated ability of SIRIS to measure all the major NO(sub y) species, and therefore to determine the partitioning of the nitrogen family over a continuous diurnal cycle, is a powerful tool in the verification and improvement of photochemical modeling

    The tropospheric gas composition of Jupiter's north equatorial belt (NH3, PH3, CH3D, GeH4, H2O) and the Jovian D/H isotropic ratio

    Get PDF
    The gas composition of the troposphere of Jupiter in the clearest regions of the North Equatorial Belt (NEB) was derived from the Voyager 1 IRIS data. The infrared spectrum for this homogeneous cloud free region was modeled to infer altitude profiles for NH3, PH3, GeH4 and H2O. The Profiles for NH3 and PH3 were found to be depleted in the upper troposphere but otherwise in agreement with their solar values at the 1 bar level. The mole fraction for CH3D was determined to be 3.5(+1.0 or -1.3) x 10 to the minus 7th power. The GeH4 mole fraction of 7+ or -2 x 10 to the minus 10th power at the 2 to 3 bar level is a factor of 10 lower than the solar value. The H2O mole fraction is approximately 1 x 0.00001 at the 2.5 bar level and is increasing to approximately 3 x 0.00001 at 4 bars where it is a factor of 30 lower than solar. Using IRIS infrared values for the mole fractions of CH3D and CH4 a value of D/H = 3.6(+1.0 or -1.4)x 0.00001 is derived. Assuming this Jovian D/H ratio is representative of the protosolar nebula, and correcting for chemical galactic evolution, yields a value of 5.5 - 9.0 x 0.00001 for the primordial D/H ratio and an upper limit of 1.8 to 2.4 x 10 to the minus 31st power cu cm for the present day baryon density
    corecore