2,200 research outputs found

    Simultaneous Ejection of Six Electrons at a Constant Potential by Hexakis(4-ferrocenylphenyl)benzene

    Get PDF
    A simple synthesis of a dendritic hexaferrocenyl electron donor (5) is described in which six ferrocene moieties are connected at the vertices of the propeller of the hexaphenylbenzene core. The molecular structure of 5 is confirmed by X-ray crystallography. An electrochemical analysis along with redox titrations (which are tantamount to coulometry) confirmed that it ejects six electrons at a single potential

    Green-Kubo formula for heat conduction in open systems

    Full text link
    We obtain an exact Green-Kubo type linear response result for the heat current in an open system. The result is derived for classical Hamiltonian systems coupled to heat baths. Both lattice models and fluid systems are studied and several commonly used implementations of heat baths, stochastic as well as deterministic, are considered. The results are valid in arbitrary dimensions and for any system sizes. Our results are useful for obtaining the linear response transport properties of mesoscopic systems. Also we point out that for systems with anomalous heat transport, as is the case in low-dimensional systems, the use of the standard Green-Kubo formula is problematic and the open system formula should be used.Comment: 4 page

    Tailoring symmetry groups using external alternate fields

    Full text link
    Macroscopic systems with continuous symmetries subjected to oscillatory fields have phases and transitions that are qualitatively different from their equilibrium ones. Depending on the amplitude and frequency of the fields applied, Heisenberg ferromagnets can become XY or Ising-like -or, conversely, anisotropies can be compensated -thus changing the nature of the ordered phase and the topology of defects. The phenomena can be viewed as a dynamic form of "order by disorder".Comment: 4 pages, 2 figures finite dimension and selection mechanism clarifie

    Distribution of sizes of erased loops of loop-erased random walks in two and three dimensions

    Get PDF
    We show that in the loop-erased random walk problem, the exponent characterizing probability distribution of areas of erased loops is superuniversal. In d-dimensions, the probability that the erased loop has an area A varies as A^{-2} for large A, independent of d, for 2 <= d <= 4. We estimate the exponents characterizing the distribution of perimeters and areas of erased loops in d = 2 and 3 by large-scale Monte Carlo simulations. Our estimate of the fractal dimension z in two-dimensions is consistent with the known exact value 5/4. In three-dimensions, we get z = 1.6183 +- 0.0004. The exponent for the distribution of durations of avalanche in the three-dimensional abelian sandpile model is determined from this by using scaling relations.Comment: 25 pages, 1 table, 8 figure

    From Gravitons to Giants

    Full text link
    We discuss exact quantization of gravitational fluctuations in the half-BPS sector around AdS5×_5 \times S5^5 background, using the dual super Yang-Mills theory. For this purpose we employ the recently developed techniques for exact bosonization of a finite number NN of fermions in terms of NN bosonic oscillators. An exact computation of the three-point correlation function of gravitons for finite NN shows that they become strongly coupled at sufficiently high energies, with an interaction that grows exponentially in NN. We show that even at such high energies a description of the bulk physics in terms of weakly interacting particles can be constructed. The single particle states providing such a description are created by our bosonic oscillators or equivalently these are the multi-graviton states corresponding to the so-called Schur polynomials. Both represent single giant graviton states in the bulk. Multi-particle states corresponding to multi-giant gravitons are, however, different, since interactions among our bosons vanish identically, while the Schur polynomials are weakly interacting at high enough energies.Comment: v2-references added, minor changes and typos corrected; 24 pages, latex, 3 epsf figure

    Word Processors with Line-Wrap: Cascading, Self-Organized Criticality, Random Walks, Diffusion, Predictability

    Full text link
    We examine the line-wrap feature of text processors and show that adding characters to previously formatted lines leads to the cascading of words to subsequent lines and forms a state of self-organized criticality. We show the connection to one-dimensional random walks and diffusion problems, and we examine the predictability of catastrophic cascades.Comment: 6 pages, LaTeX with RevTeX package, 4 postscript figures appende

    Velocity Correlations, Diffusion and Stochasticity in a One-Dimensional System

    Full text link
    We consider the motion of a test particle in a one-dimensional system of equal-mass point particles. The test particle plays the role of a microscopic "piston" that separates two hard-point gases with different concentrations and arbitrary initial velocity distributions. In the homogeneous case when the gases on either side of the piston are in the same macroscopic state, we compute and analyze the stationary velocity autocorrelation function C(t). Explicit expressions are obtained for certain typical velocity distributions, serving to elucidate in particular the asymptotic behavior of C(t). It is shown that the occurrence of a non-vanishing probability mass at zero velocity is necessary for the occurrence of a long-time tail in C(t). The conditions under which this is a t3t^{-3} tail are determined. Turning to the inhomogeneous system with different macroscopic states on either side of the piston, we determine its effective diffusion coefficient from the asymptotic behavior of the variance of its position, as well as the leading behavior of the other moments about the mean. Finally, we present an interpretation of the effective noise arising from the dynamics of the two gases, and thence that of the stochastic process to which the position of any particle in the system reduces in the thermodynamic limit.Comment: 22 files, 2 eps figures. Submitted to PR

    Dimensional structural constants from chiral and conformal bosonization of QCD

    Get PDF
    We derive the dimensional non-perturbative part of the QCD effective action for scalar and pseudoscalar meson fields by means of chiral and conformal bosonization. The related structural coupling constants L_5 and L_8 of the chiral lagrangian are estimated using general relations which are valid in a variety of chiral bosonization models without explicit reference to model parameters. The asymptotics for large scalar fields in QCD is elaborated, and model-independent constraints on dimensional coupling constants of the effective meson lagrangian are evaluated. We determine also the interaction between scalar quarkonium and the gluon density and obtain the scalar glueball-quarkonium potential.Comment: 21 pages, LaTe
    corecore