261 research outputs found
Deeply subrecoil two-dimensional Raman cooling
We report the implementation of a two-dimensional Raman cooling scheme using
sequential excitations along the orthogonal axes. Using square pulses, we have
cooled a cloud of ultracold Cesium atoms down to an RMS velocity spread of
0.39(5) recoil velocity, corresponding to an effective temperature of 30 nK
(0.15 T_rec). This technique can be useful to improve cold atom atomic clocks,
and is particularly relevant for clocks in microgravity.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
Levy distribution in many-particle quantum systems
Levy distribution, previously used to describe complex behavior of classical
systems, is shown to characterize that of quantum many-body systems. Using two
complimentary approaches, the canonical and grand-canonical formalisms, we
discovered that the momentum profile of a Tonks-Girardeau gas, -- a
one-dimensional gas of impenetrable (hard-core) bosons, harmonically
confined on a lattice at finite temperatures, obeys Levy distribution. Finally,
we extend our analysis to different confinement setups and demonstrate that the
tunable Levy distribution properly reproduces momentum profiles in
experimentally accessible regions. Our finding allows for calibration of
complex many-body quantum states by using a unique scaling exponent.Comment: 7 pages, 6 figures, results are generalized, new examples are adde
Three-dimensional Simulations of Disk Accretion to an Inclined Dipole: I. Magnetospheric Flow at Different Theta
We present results of fully three-dimensional MHD simulations of disk
accretion to a rotating magnetized star with its dipole moment inclined at an
angle Theta to the rotation axis of the disk. We observed that matter accretes
from the disk to a star in two or several streams depending on Theta. Streams
may precess around the star at small Theta. The inner regions of the disk are
warped. The warping is due to the tendency of matter to co-rotate with inclined
magnetosphere. The accreting matter brings positive angular momentum to the
(slowly rotating) star tending to spin it up. The corresponding torque N_z
depends only weakly on Theta. The angular momentum flux to the star is
transported predominantly by the magnetic field; the matter component
contributes < 1 % of the total flux. Results of simulations are important for
understanding the nature of classical T Tauri stars, cataclysmic variables, and
X-ray pulsars.Comment: 26 pages, 22 figures, LaTeX, macros: emulapj.sty, avi simulations are
available at http://www.astro.cornell.edu/us-rus/inclined.ht
Exact and explicit probability densities for one-sided Levy stable distributions
We study functions g_{\alpha}(x) which are one-sided, heavy-tailed Levy
stable probability distributions of index \alpha, 0< \alpha <1, of fundamental
importance in random systems, for anomalous diffusion and fractional kinetics.
We furnish exact and explicit expression for g_{\alpha}(x), 0 \leq x < \infty,
satisfying \int_{0}^{\infty} exp(-p x) g_{\alpha}(x) dx = exp(-p^{\alpha}),
p>0, for all \alpha = l/k < 1, with k and l positive integers. We reproduce all
the known results given by k\leq 4 and present many new exact solutions for k >
4, all expressed in terms of known functions. This will allow a 'fine-tuning'
of \alpha in order to adapt g_{\alpha}(x) to a given experimental situation.Comment: 4 pages, 3 figures and 1 tabl
Cirrhosis Diagnosis and Liver Fibrosis Staging: Transient Elastometry Versus Cirrhosis Blood Test.
INTRODUCTION: Elastometry is more accurate than blood tests for cirrhosis diagnosis. However, blood tests were developed for significant fibrosis, with the exception of CirrhoMeter developed for cirrhosis. We compared the performance of Fibroscan and CirrhoMeter, and classic binary cirrhosis diagnosis versus new fibrosis staging for cirrhosis diagnosis.
METHODS: The diagnostic population included 679 patients with hepatitis C and liver biopsy (Metavir staging and morphometry), Fibroscan, and CirrhoMeter. The prognostic population included 1110 patients with chronic liver disease and both tests.
RESULTS: Binary diagnosis: AUROCs for cirrhosis were: Fibroscan: 0.905; CirrhoMeter: 0.857; and P=0.041. Accuracy (Youden cutoff) was: Fibroscan: 85.4%; CirrhoMeter: 79.2%; and P<0.001. Fibrosis classification provided 6 classes (F0/1, F1/2, F2±1, F3±1, F3/4, and F4). Accuracy was: Fibroscan: 88.2%; CirrhoMeter: 88.8%; and P=0.77. A simplified fibrosis classification comprised 3 categories: discrete (F1±1), moderate (F2±1), and severe (F3/4) fibrosis. Using this simplified classification, CirrhoMeter predicted survival better than Fibroscan (respectively, χ=37.9 and 19.7 by log-rank test), but both predicted it well (P<0.001 by log-rank test). Comparison: binary diagnosis versus fibrosis classification, respectively, overall accuracy: CirrhoMeter: 79.2% versus 88.8% (P<0.001); Fibroscan: 85.4% versus 88.2% (P=0.127); positive predictive value for cirrhosis by Fibroscan: Youden cutoff (11.1 kPa): 49.1% versus cutoffs of F3/4 (17.6 kPa): 67.6% and F4 classes (25.7 kPa): 82.4%.
CONCLUSIONS: Fibroscan\u27s usual binary cutoffs for cirrhosis diagnosis are not sufficiently accurate. Fibrosis classification should be preferred over binary diagnosis. A cirrhosis-specific blood test markedly attenuates the accuracy deficit for cirrhosis diagnosis of usual blood tests versus transient elastometry, and may offer better prognostication
Force-Free Models of Magnetically Linked Star-Disk Systems
Disk accretion onto a magnetized star occurs in a variety of astrophysical
contexts, from young stars to X-ray pulsars. The magnetohydrodynamic
interaction between the stellar field and the accreting matter can have a
strong effect on the disk structure, the transfer of mass and angular momentum
between the disk and the star, and the production of bipolar outflows, e.g.,
plasma jets. We study a key element of this interaction - the time evolution of
the magnetic field configuration brought about by the relative rotation between
the disk and the star - using simplified, largely semianalytic, models. We
first discuss the rapid inflation and opening up of the magnetic field lines in
the corona above the accretion disk, which is caused by the differential
rotation twisting. Then we consider additional physical effects that tend to
limit this expansion, such as the effect of plasma inertia and the possibility
of reconnection in the disk's corona, the latter possibly leading to repeated
cycles in the evolution. We also derive the condition for the existence of a
steady state for a resistive disk and conclude that a steady state
configuration is not realistically possible. Finally, we generalize our
analysis of the opening of magnetic field lines by using a non-self-similar
numerical model that applies to an arbitrarily rotating (e.g. keplerian) disk.Comment: 75 pages, 22 figures, 2 tables. Submitted to Astrophysical Journa
Dicke-Type Energy Level Crossings in Cavity-Induced Atom Cooling: Another Superradiant Cooling
This paper is devoted to energy-spectral analysis for the system of a
two-level atom coupled with photons in a cavity. It is shown that the
Dicke-type energy level crossings take place when the atom-cavity interaction
of the system undergoes changes between the weak coupling regime and the strong
one. Using the phenomenon of the crossings we develop the idea of
cavity-induced atom cooling proposed by the group of Ritsch, and we lay
mathematical foundations of a possible mechanism for another superradiant
cooling in addition to that proposed by Domokos and Ritsch. The process of our
superradiant cooling can function well by cavity decay and by control of the
position of the atom, at least in (mathematical) theory, even if there is
neither atomic absorption nor atomic emission of photons.Comment: 15 pages; 8 figure
Mean-field limit of systems with multiplicative noise
A detailed study of the mean-field solution of Langevin equations with
multiplicative noise is presented. Three different regimes depending on
noise-intensity (weak, intermediate, and strong-noise) are identified by
performing a self-consistent calculation on a fully connected lattice. The most
interesting, strong-noise, regime is shown to be intrinsically unstable with
respect to the inclusion of fluctuations, as a Ginzburg criterion shows. On the
other hand, the self-consistent approach is shown to be valid only in the
thermodynamic limit, while for finite systems the critical behavior is found to
be different. In this last case, the self-consistent field itself is broadly
distributed rather than taking a well defined mean value; its fluctuations,
described by an effective zero-dimensional multiplicative noise equation,
govern the critical properties. These findings are obtained analytically for a
fully connected graph, and verified numerically both on fully connected graphs
and on random regular networks. The results presented here shed some doubt on
what is the validity and meaning of a standard mean-field approach in systems
with multiplicative noise in finite dimensions, where each site does not see an
infinite number of neighbors, but a finite one. The implications of all this on
the existence of a finite upper critical dimension for multiplicative noise and
Kardar-Parisi-Zhang problems are briefly discussed.Comment: 9 Pages, 8 Figure
Photonic superdiffusive motion in resonance line radiation trapping - partial frequency redistribution effects
The relation between the jump length probability distribution function and
the spectral line profile in resonance atomic radiation trapping is considered
for Partial Frequency Redistribution (PFR) between absorbed and reemitted
radiation. The single line Opacity Distribution Function [M.N. Berberan-Santos
et.al. J.Chem.Phys. 125, 174308 (2006)] is generalized for PFR and used to
discuss several possible redistribution mechanisms (pure Doppler broadening,
combined natural and Doppler broadening and combined Doppler, natural and
collisional broadening). It is shown that there are two coexisting scales with
a different behavior: the small scale is controlled by the intricate PFR
details while the large scale is essentially given by the atom rest frame
redistribution asymptotic. The pure Doppler and combined natural, Doppler and
collisional broadening are characterized by both small and large scale
superdiffusive Levy flight behaviors while the combined natural and Doppler
case has an anomalous small scale behavior but a diffusive large scale
asymptotic. The common practice of assuming complete redistribution in core
radiation and frequency coherence in the wings of the spectral distribution is
incompatible with the breakdown of superdiffusion in combined natural and
Doppler broadening conditions
Large phenotype jumps in biomolecular evolution
By defining the phenotype of a biopolymer by its active three-dimensional
shape, and its genotype by its primary sequence, we propose a model that
predicts and characterizes the statistical distribution of a population of
biopolymers with a specific phenotype, that originated from a given genotypic
sequence by a single mutational event. Depending on the ratio g0 that
characterizes the spread of potential energies of the mutated population with
respect to temperature, three different statistical regimes have been
identified. We suggest that biopolymers found in nature are in a critical
regime with g0 in the range 1-6, corresponding to a broad, but not too broad,
phenotypic distribution resembling a truncated Levy flight. Thus the biopolymer
phenotype can be considerably modified in just a few mutations. The proposed
model is in good agreement with the experimental distribution of activities
determined for a population of single mutants of a group I ribozyme.Comment: to appear in Phys. Rev. E; 7 pages, 6 figures; longer discussion in
VII, new fig.
- …