126 research outputs found

    Bone turnover markers are correlated with total skeletal uptake of 99mTc-methylene diphosphonate (99mTc-MDP)

    Get PDF
    ABSTRACT: BACKGROUND: Skeletal uptake of 99mTc labelled methylene diphosphonate (99mTc-MDP) is used for producing images of pathological bone uptake due to its incorporation to the sites of active bone turnover. This study was done to validate bone turnover markers using total skeletal uptake (TSU) of 99mTc-MDP. METHODS: 22 postmenopausal women (52-80 years) volunteered to participate. Scintigraphy was performed by injecting 520 MBq of 99mTc-MDP and taking whole body images after 3 minutes, and 5 hours. TSU was calculated from these two images by taking into account the urinary loss and soft tissue uptake. Bone turnover markers used were bone specific alkaline phosphatase (S-Bone ALP), three different assays for serum osteocalcin (OC), tartrate resistant acid phosphatase 5b (S-TRACP5b), serum C-terminal cross-linked telopeptides of type I collagen (S-CTX-I) and three assays for urinary osteocalcin (U-OC). RESULTS: The median TSU of 99mTc-MDP was 23% of the administered activity. All bone turnover markers were significantly correlated with TSU with r-values from 0.52 (p = 0.013) to 0.90 (p < 0.001). The two resorption markers had numerically higher correlations (S-TRACP5b r = 0.90, S-CTX-I r = 0.80) than the formation markers (S-Total OC r = 0.72, S-Bone ALP r = 0.66), but the difference was not statistically significant. TSU did not correlate with age, weight, body mass index or bone mineral density. CONCLUSION: In conclusion, bone turnover markers are strongly correlated with total skeletal uptake of 99mTc-MDP. There were no significant differences in correlations for bone formation and resorption markers. This should be due to the coupling between formation and resorption

    Characterisation of feline renal cortical fibroblast cultures and their transcriptional response to transforming growth factor beta 1

    Get PDF
    Chronic kidney disease (CKD) is common in geriatric cats, and the most prevalent pathology is chronic tubulointerstitial inflammation and fibrosis. The cell type predominantly responsible for the production of extra-cellular matrix in renal fibrosis is the myofibroblast, and fibroblast to myofibroblast differentiation is probably a crucial event. The cytokine TGF-β1 is reportedly the most important regulator of myofibroblastic differentiation in other species. The aim of this study was to isolate and characterise renal fibroblasts from cadaverous kidney tissue of cats with and without CKD, and to investigate the transcriptional response to TGF-β1

    Protein kinase Cepsilon is important for migration of neuroblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migration is important for the metastatic capacity and thus for the malignancy of cancer cells. There is limited knowledge on regulatory factors that promote the migration of neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms regulate neuroblastoma cell motility.</p> <p>Methods</p> <p>PKC isoforms were downregulated with siRNA or modulated with activators and inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and expression levels were measured with Western blot.</p> <p>Results</p> <p>Stimulation with 12-<it>O</it>-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor GF109203X and the inhibitor of classical isoforms Gö6976 inhibited migration while an inhibitor of PKCβ isoforms did not have an effect. Downregulation of PKCε, but not of PKCα or PKCδ, with siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways, respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might be involved in TPA-induced migration but not in migration driven by PKCε. TPA induced phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS) which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against different PKC isoforms before stimulation with TPA did not influence the phosphorylation of MARCKS.</p> <p>Conclusion</p> <p>PKCε is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the Erk pathway nor MARCKS are critical downstream targets of PKCε but they may be involved in TPA-mediated migration.</p

    Low free 25-hydroxyvitamin D and high vitamin D binding protein and parathyroid hormone in obese Caucasians. A complex association with bone?

    Get PDF
    BackgroundStudies have shown altered vitamin D metabolism in obesity. We assessed differences between obese and normal-weight subjects in total, free, and bioavailable 25-hydroxyvitamin D (25(OH) D, 25(OH) D-Free, and 25(OH) D-Bio, respectively), vitamin D binding protein (DBP), parathyroid hormone (PTH) and bone traits.Methods595 37-47-year-old healthy Finnish men and women stratified by BMI were examined in this cross-sectional study. Background characteristic and intakes of vitamin D and calcium were collected. The concentrations of 25(OH) D, PTH, DBP, albumin and bone turnover markers were determined from blood. 25(OH) D-Free and 25(OH) D-Bio were calculated. pQCT was performed at radius and tibia.ResultsMean +/- SE (ANCOVA) 25(OH) D-Free (10.8 +/- 0.6 vs 12.9 +/- 0.4 nmol/L; P = 0.008) and 25(OH) DBio (4.1 +/- 0.3 vs 5.1 +/- 0.1 nmol/L; P = 0.003) were lower in obese than in normal-weight women. In men, 25(OH) D (48.0 +/- 2.4 vs 56.4 +/- 2.0 nmol/L, P = 0.003), 25(OH) D-Free (10.3 +/- 0.7 vs 12.5 +/- 0.6 pmol/L; P = 0.044) and 25(OH) D-Bio (4.2 +/- 0.3 vs 5.1 +/- 0.2 nmol/L; P = 0.032) were lower in obese. Similarly in all subjects, 25(OH) D, 25(OH) D-Free and 25(OH) D-Bio were lower in obese (P<0.001). DBP (399 +/- 12 vs 356 +/- 7mg/L, P = 0.008) and PTH (62.2 +/- 3.0 vs 53.3 +/- 1.9 ng/L; P = 0.045) were higher in obese than in normal-weight women. In all subjects, PTH and DBP were higher in obese (P = 0.047 and P = 0.004, respectively). In obese women, 25(OH) D was negatively associated with distal radius trabecular density (R-2 = 0.089, P = 0.009) and tibial shaft cortical strength index (CSI) (R-2 = 0.146, P = 0.004). 25(OH) D-Free was negatively associated with distal radius CSI (R-2 = 0.070, P = 0.049), radial shaft cortical density (CorD) (R-2 = 0.050, P = 0.045), and tibial shaft CSI (R-2 = 0.113, P = 0.012). 25(OH) D-Bio was negatively associated with distal radius CSI (R-2 = 0.072, P = 0.045), radial shaft CorD (R-2 = 0.059, P = 0.032), and tibial shaft CSI (R-2 = 0.093, P = 0.024).ConclusionsThe associations between BMI and 25(OH) D, 25(OH) D-Free, and 25(OH) D-Bio, DBP, and PTH suggest that obese subjects may differ from normal-weight subjects in vitamin D metabolism. BMI associated positively with trabecular bone traits and CSI in our study, and slightly negatively with cortical bone traits. Surprisingly, there was a negative association of free and bioavailable 25(OH) D and some of the bone traits in obese women

    Tonsillar cytokine expression between patients with tonsillar hypertrophy and recurrent tonsillitis

    Get PDF
    Background: Tonsils provide an innovative in vivo model for investigating immune response to infections and allergens. However, data are scarce on the differences in tonsillar virus infections and immune responses between patients with tonsillar hypertrophy or recurrent tonsillitis. We investigated the differences in virus detection and T cell and interferon gene expression in patients undergoing tonsillectomy due to tonsillar hypertrophy or recurrent tonsillitis.Methods: Tonsils of 89 surgical patients with tonsillar hypertrophy (n = 47) or recurrent tonsillitis (n = 42) were analysed. Patients were carefully characterized clinically. Standard questionnaire was used to asses preceding and allergy symptoms. Respiratory viruses were analysed in tonsils and nasopharynx by PCR. Quantitative real-time PCR was used to analyse intratonsillar gene expressions of IFN-alpha, IFN-beta, IFN-gamma, IL-10, IL-13, IL-17, IL-28, IL-29, IL-37, TGF-beta, FOXP3, GATA3, RORC2 and Tbet.Results: Median age of the subjects was 15 years (range 2-60). Patients with tonsillar hypertrophy were younger, smoked less often, had less pollen allergy and had more adenovirus, bocavirus-1, coronavirus and rhinovirus in nasopharynx (all P < 0.05). Only bocavirus-1 was more often detected in hypertrophic tonsils (P < 0.05). In age-adjusted analysis, tonsillar hypertrophy was associated with higher mRNA expressions of IL-37 (P < 0.05).Conclusions: Intratonsillar T cell and interferon gene expressions appeared to be relatively stable for both tonsillar hypertrophy and recurrent tonsillitis. Of the studied cytokines, only newly discovered anti-inflammatory cytokine IL-37, was independently associated with tonsillar hypertrophy showing slightly stronger anti-inflammatory response in these patients

    Beta 1-integrin-c-Met cooperation reveals an inside-in survival signalling on autophagy-related endomembranes

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/R.B.M. was a recipient of a UK Medical Research Council (MRC) studentship, MRC Centenary Award, Barts and The London Charity (472/1711) and Rosetrees Trust (M314), N.K. was a recipient of an MRC studentship (MR/J500409/1), C.J. was a recipient of the Barts and The London Charitable Foundation Scholarship (RAB 05/PJ/07), L.M. was supported by CR-UK, Breast Cancer Now (2008NovPR10) and Rosetrees Trust (M346), A.H. was a recipient of a CR-UK studentship (C236/A11795). P.J.P. was supported by CR-UK. J.I. was supported by grants from the Academy of Finland, ERC Starting grant, Finnish Cancer Organisations and Sigrid Juselius Foundation. S.K. was supported by the MRC (G0501003) and The British Lung Foundation (CAN09-4)

    Development of Transgenic Cloned Pig Models of Skin Inflammation by DNA Transposon-Directed Ectopic Expression of Human β1 and α2 Integrin

    Get PDF
    Integrins constitute a superfamily of transmembrane signaling receptors that play pivotal roles in cutaneous homeostasis by modulating cell growth and differentiation as well as inflammatory responses in the skin. Subrabasal expression of integrins α2 and/or β1 entails hyperproliferation and aberrant differentiation of keratinocytes and leads to dermal and epidermal influx of activated T-cells. The anatomical and physiological similarities between porcine and human skin make the pig a suitable model for human skin diseases. In efforts to generate a porcine model of cutaneous inflammation, we employed the Sleeping Beauty DNA transposon system for production of transgenic cloned Göttingen minipigs expressing human β1 or α2 integrin under the control of a promoter specific for subrabasal keratinocytes. Using pools of transgenic donor fibroblasts, cloning by somatic cell nuclear transfer was utilized to produce reconstructed embryos that were subsequently transferred to surrogate sows. The resulting pigs were all transgenic and harbored from one to six transgene integrants. Molecular analyses on skin biopsies and cultured keratinocytes showed ectopic expression of the human integrins and localization within the keratinocyte plasma membrane. Markers of perturbed skin homeostasis, including activation of the MAPK pathway, increased expression of the pro-inflammatory cytokine IL-1α, and enhanced expression of the transcription factor c-Fos, were identified in keratinocytes from β1 and α2 integrin-transgenic minipigs, suggesting the induction of a chronic inflammatory phenotype in the skin. Notably, cellular dysregulation obtained by overexpression of either β1 or α2 integrin occurred through different cellular signaling pathways. Our findings mark the creation of the first cloned pig models with molecular markers of skin inflammation. Despite the absence of an overt psoriatic phenotype, these animals may possess increased susceptibility to severe skin damage-induced inflammation and should be of great potential in studies aiming at the development and refinement of topical therapies for cutaneous inflammation including psoriasis

    Calpain-mediated vimentin cleavage occurs upstream of MT1-MMP membrane translocation to facilitate endothelial sprout initiation

    Get PDF
    Endothelial cells normally line the vasculature and remain quiescent. However, these cells can be rapidly stimulated to undergo morphogenesis and initiate new blood vessel formation given the proper cues. This study reports a new mechanism for initiating angiogenic sprout formation that involves vimentin, the major intermediate filament protein in endothelial cells. Initial studies confirmed vimentin was required for sphingosine 1-phosphate (S1P)- and growth factor (GF)-induced endothelial cell invasion, and vimentin was cleaved by calpains during invasion. Calpains were predominantly activated by GF and were required for sprout initiation. Because others have reported membrane type 1-matrix metalloproteinase (MT1-MMP) is required for endothelial sprouting responses, we tested whether vimentin and calpain acted upstream of MT1-MMP. Both calpain and vimentin were required for successful MT1-MMP membrane translocation, which was stimulated by S1P. In addition, vimentin complexed with MT1-MMP in a manner that required both the cytoplasmic domain of MT1-MMP and calpain activation, which increased the soluble pool of vimentin in endothelial cells. Altogether, these data indicate that pro-angiogenic signals converge to activate calpain-dependent vimentin cleavage and increase vimentin solubility, which act upstream to facilitate MT1-MMP membrane translocation, resulting in successful endothelial sprout formation in three-dimensional collagen matrices. These findings help explain why S1P and GF synergize to stimulate robust sprouting in 3D collagen matrices

    Vicrostatin – An Anti-Invasive Multi-Integrin Targeting Chimeric Disintegrin with Tumor Anti-Angiogenic and Pro-Apoptotic Activities

    Get PDF
    Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN) can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., αvβ3, αvβ5, and α5β1), VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC) inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis). Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN) was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN
    corecore