370 research outputs found
Competing ideologies of Russia's civil society
Many analysts and public opinion makers in the West conflate the notions of Russia’s non-systemic liberal opposition and the country’s civil society. Indeed, despite garnering the support of a minority of Russia’s population, non-systemic liberal opposition represents a well-organized civic group with a clearly articulated agenda and the ability to take action. Yet, does Russia’s civil society end there? A closer look at the country’s politics shows that Russia has a substantial conservative-traditionalist faction that has also developed agenda for action and formulated opinions. This group is anti-liberal rather than illiberal ideologically and pro-strong state/pro a geopolitically independent Russia rather than pro-Kremlin politically. The interaction between liberal and conservative civic groups represents the battle of meanings, ideas, and ethics, and ultimately determines the future trajectory of Russia’s evolution. Thus, the analysis of Russia’s civil society must represent a rather more nuanced picture than a mere study of the liberal non-systemic opposition. This article will examine the complexity of Russia’s civil society scene with reference to the interplay between the liberal opposition and conservative majority factions. The paper will argue that such complexity stems from ideological value pluralism that falls far beyond the boundaries of the liberal consensus, often skewing our understanding of political practice in Russia
On the Definition of Effective Permittivity and Permeability For Thin Composite Layers
The problem of definition of effective material parameters (permittivity and
permeability) for composite layers containing only one-two parallel arrays of
complex-shaped inclusions is discussed. Such structures are of high importance
for the design of novel metamaterials, where the realizable layers quite often
have only one or two layers of particles across the sample thickness. Effective
parameters which describe the averaged induced polarizations are introduced. As
an explicit example, we develop an analytical model suitable for calculation of
the effective material parameters and
for double arrays of electrically small electrically polarizable scatterers.
Electric and magnetic dipole moments induced in the structure and the
corresponding reflection and transmission coefficients are calculated using the
local field approach for the normal plane-wave incidence, and effective
parameters are introduced through the averaged fields and polarizations. In the
absence of losses both material parameters are purely real and satisfy the
Kramers-Kronig relations and the second law of thermodynamics. We compare the
analytical results to the simulated and experimental results available in the
literature. The physical meaning of the introduced parameters is discussed in
detail.Comment: 6 pages, 5 figure
Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption
Energy of propagating electromagnetic waves can be fully absorbed in a thin
lossy layer, but only in a narrow frequency band, as follows from the causality
principle. On the other hand, it appears that there are no fundamental
limitations on broadband matching of thin absorbing layers. However, known thin
absorbers produce significant reflections outside of the resonant absorption
band. In this paper we explore possibilities to realize a thin absorbing layer
which produces no reflected waves in a very wide frequency range, while the
transmission coefficient has a narrow peak of full absorption. Here we show,
both theoretically and experimentally, that a wide-band-matched thin resonant
absorber, invisible in reflection, can be realized if one and the same resonant
mode of the absorbing array unit cells is utilized to create both electric and
magnetic responses. We test this concept using chiral particles in each unit
cells, arranged in a periodic planar racemic array, utilizing chirality
coupling in each unit cell but compensating the field coupling at the
macroscopic level. We prove that the concept and the proposed realization
approach also can be used to create non-reflecting layers for full control of
transmitted fields. Our results can have a broad range of potential
applications over the entire electromagnetic spectrum including, for example,
perfect ultra-compact wave filters and selective multi-frequency sensors.Comment: 9 pages, 10 figure
Quasiclassical calculations of BBR-induced depopulation rates and effective lifetimes of Rydberg nS, nP and nD alkali-metal atoms with n < 80
Rates of depopulation by blackbody radiation (BBR) and effective lifetimes of
alkali-metal \textit{nS}, \textit{n}P and \textit{nD} Rydberg states have been
calculated in a wide range of principal quantum numbers at the
ambient temperatures of 77, 300 and 600 K. Quasiclassical formulas were used to
calculate the radial matrix elements of the dipole transitions from Rydberg
states. Good agreement of our numerical results with the available theoretical
and experimental data has been found. We have also obtained simple analytical
formulas for estimates of effective lifetimes and BBR-induced depopulation
rates, which well agree with the numerical data.Comment: 12 pages, 6 figures, 8 tables. Typo in Eq.16 corrected in V2. Typos
in Eq.5 and Eq.9 corrected in V3. Error in calculation of Rb nP_{3/2}
effective lifetimes corrected in V4: see new data in Table II and Table VII,
Erratum to be published in PR
Effect of finite detection efficiency on the observation of the dipole-dipole interaction of a few Rydberg atoms
We have developed a simple analytical model describing multi-atom signals
that are measured in experiments on dipole-dipole interaction at resonant
collisions of a few Rydberg atoms. It has been shown that finite efficiency of
the selective field-ionization detector leads to the mixing up of the spectra
of resonant collisions registered for various numbers of Rydberg atoms. The
formulas which help to estimate an appropriate mean Rydberg atom number for a
given detection efficiency are presented. We have found that a measurement of
the relation between the amplitudes of collisional resonances observed in the
one- and two-atom signals provides a straightforward determination of the
absolute detection efficiency and mean Rydberg atom number. We also performed a
testing experiment on resonant collisions in a small excitation volume of a
sodium atomic beam. The resonances observed for 1 to 4 detected Rydberg atoms
have been analyzed and compared with theory.Comment: 10 pages, 4 figures; equations 8,9,18,19,23,26-31, figures 3 and
4(d), and measurements revised in version
Stable and fast semi-implicit integration of the stochastic Landau-Lifshitz equation
We propose new semi-implicit numerical methods for the integration of the
stochastic Landau-Lifshitz equation with built-in angular momentum
conservation. The performance of the proposed integrators is tested on the 1D
Heisenberg chain. For this system, our schemes show better stability properties
and allow us to use considerably larger time steps than standard explicit
methods. At the same time, these semi-implicit schemes are also of comparable
accuracy to and computationally much cheaper than the standard midpoint
implicit method. The results are of key importance for atomistic spin dynamics
simulations and the study of spin dynamics beyond the macro spin approximation.Comment: 24 pages, 5 figure
- …