226 research outputs found
The role of the Fraunhofer lines in solar brightness variability
The solar brightness varies on timescales from minutes to decades. A clear
identification of the physical processes behind such variations is needed for
developing and improving physics-based models of solar brightness variability
and reconstructing solar brightness in the past. This is, in turn, important
for better understanding the solar-terrestrial and solar-stellar connections.
We estimate the relative contributions of the continuum, molecular, and
atomic lines to the solar brightness variations on different timescales.
Our approach is based on the assumption that variability of the solar
brightness on timescales greater than a day is driven by the evolution of the
solar surface magnetic field. We calculated the solar brightness variations
employing the solar disc area coverage of magnetic features deduced from the
MDI/SOHO observations. The brightness contrasts of magnetic features relative
to the quiet Sun were calculated with a non-LTE radiative transfer code as
functions of disc position and wavelength. By consecutive elimination of
molecular and atomic lines from the radiative transfer calculations, we
assessed the role of these lines in producing solar brightness variability.
We show that the variations in Fraunhofer lines define the amplitude of the
solar brightness variability on timescales greater than a day and even the
phase of the total solar irradiance variability over the 11-year cycle. We also
demonstrate that molecular lines make substantial contribution to solar
brightness variability on the 11-year activity cycle and centennial timescales.
In particular, our model indicates that roughly a quarter of the total solar
irradiance variability over the 11-year cycle originates in molecular lines.
The maximum of the absolute spectral brightness variability on timescales
greater than a day is associated with the CN violet system between 380 and 390
nm.Comment: 9 pages, 4 figures, accepted for publication in
Astronomy&Astrophysic
Critical temperature of superconductor/ferromagnet bilayers
Superconductor/ferromagnet bilayers are known to exhibit nontrivial
dependence of the critical temperature T_c on the thickness d_f of the
ferromagnetic layer. We develop a general method for investigation of T_c as a
function of the bilayer's parameters. It is shown that interference of
quasiparticles makes T_c(d_f) a nonmonotonic function. The results are in good
agreement with experiment. Our method also applies to multilayered structures.Comment: 4 pages, 2 EPS figures; the style file jetpl.cls is included. Version
2: typos correcte
Magnetoresistance of a semiconducting magnetic wire with domain wall
We investigate theoretically the influence of the spin-orbit interaction of
Rashba type on the magnetoresistance of a semiconducting ferromagnetic
nanostructure with a laterally constrained domain wall. The domain wall is
assumed sharp (on the scale of the Fermi wave length of the charge carriers).
It is shown that the magnetoresistance in such a case can be considerably
large, which is in a qualitative agreement with recent experimental
observations. It is also shown that spin-orbit interaction may result in an
increase of the magnetoresistance. The role of localization corrections is also
briefly discussed.Comment: 5 pages, 2 figure
The impact of innovations in the production of biologically valuable food products on supply chain management in the regional economy
Abstract— The article shows a study of the role of supply chain management of innovative biologically valuable food products in the industrial development and economy of the region. The analysis of the process of updating the assortment of food products based on the introduction of innovative developments and production principles conducive to the release of a healthy diet product (innovative product) is presented. The main provisions of the concept of healthy food products, the category of “innovative food products” are analyzed. The article systematizes the definitions of the concept of “innovative product”. Based on the results of the study, features, functional properties and characteristic features of an innovative food product are determined. Based on the concept of “innovative food product”, the concepts of “new food product”, “improved food product”, and “modified food product” are formulated. A classification model of innovative food products is presented. Based on it, it is shown that the development, production and sale of an innovative food product two functions: economic and social. The study made it possible to formulate the main criteria that make it possible to attribute a food product to a group of innovative food products. The article describes the characteristics of an innovative food product, describes market and consumer properties. The author's definitions of concepts are given: “innovative food product”, “new food product”, “improved food product”, “modified food product”. A classification of innovative food products is proposed
Re-entrant superconductivity in Nb/Cu(1-x)Ni(x) bilayers
We report on the first observation of a pronounced re-entrant
superconductivity phenomenon in superconductor/ferromagnetic layered systems.
The results were obtained using a superconductor/ferromagnetic-alloy bilayer of
Nb/Cu(1-x)Ni(x). The superconducting transition temperature T_{c} drops sharply
with increasing thickness d_{CuNi} of the ferromagnetic layer, until complete
suppression of superconductivity is observed at d_{CuNi}= 4 nm. Increasing the
Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at
d_{CuNi}=13 nm. Our experiments give evidence for the pairing function
oscillations associated with a realization of the quasi-one dimensional
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state in the ferromagnetic layer.Comment: 3 pages, 3 figures, REVTEX4/twocolum
Evidence for two-dimensional nucleation of superconductivity in MgB
According to the crystal structure of MgB and band structure
calculations quasi-two-dimensional (2D) boron planes are responsible for the
superconductivity. We report on critical fields and resistance measurements of
30 nm thick MgB films grown on MgO single crystalline substrate. A linear
temperature dependence of the parallel and perpendicular upper critical fields
indicate a 3D-like penetration of magnetic field into the sample. Resistivity
measurements, in contrast, yield a temperature dependence of fluctuation
conductivity above T which agrees with the Aslamazov-Larkin theory of
fluctuations in 2D superconductors. We consider this finding as an experimental
evidence of two-dimensional nucleation of superconductivity in MgB.Comment: 5 RevTex pages, 3 PostScript Figures ZIPed in archive Sidoren.zip.
Submitted to EuroPhys. Lett. December 3, 200
Triplet proximity effect in FSF trilayers
We study the critical temperature T_c of FSF trilayers (F is a ferromagnet, S
is a singlet superconductor), where the triplet superconducting component is
generated at noncollinear magnetizations of the F layers. An exact numerical
method is employed to calculate T_c as a function of the trilayer parameters,
in particular, mutual orientation of magnetizations. Analytically, we consider
limiting cases. Our results determine conditions which are necessary for
existence of recently investigated odd triplet superconductivity in SF
multilayers.Comment: 5 pages, 4 EPS figures; the style file jetpl.cls is included. Version
2: minor corrections, added reference. Version 3: minor correction
Reentrant Superconductivity and Superconducting Critical Temperature Oscillations in F/S/F trilayers of Cu41Ni59/Nb/Cu41Ni59 Grown on Cobalt Oxide
Ferromagnet/Superconductor/Ferromagnet (F/S/F) trilayers constitute the core
of a superconducting spin valve. The switching effect of the spin valve is
based on interference phenomena occurring due to the proximity effect at the
S/F interfaces. A remarkable effect is only expected if the core structure
exhibits strong critical temperature oscillations, or most favorable, reentrant
superconductivity, when the thickness of the ferromagnetic layer is increased.
The core structure has to be grown on an antiferromagnetic oxide layer (or such
layer to be placed on top) to pin by exchange bias the
magnetization-orientation of one of the ferromagnetic layers. In the present
paper we demonstrate that this is possible, keeping the superconducting
behavior of the core structure undisturbed.Comment: 22 pages, 12 figures, 1 tabl
- …