374 research outputs found

    Squeezed-light source for the superresolving microscopy

    Full text link
    We propose a source of multimode squeezed light that can be used for the superresolving microscopy beyond the standard quantum limit. This source is an optical parametric amplifier with a properly chosen diaphragm on its output and a Fourier lens. We demonstrate that such an arrangement produces squeezed prolate spheroidal waves which are the eigen modes of the optical imaging scheme used in microscopy. The degree of squeezing and the number of spatial modes in illuminating light, necessary for the effective object field reconstruction, are evaluatedComment: 6 pages, 1 figure, RevTeX4. Shortened version will appear in Optics Letter

    Quantum teleportation of optical images with frequency conversion

    Full text link
    We describe a new version of continuous variables quantum holographic teleportation of optical images. Unlike the previously proposed scheme, it is based on the continuous variables quantum entanglement between the light fields of different frequencies and allows for the wavelength conversion between the original and the teleported images. The frequency tunable holographic teleportation protocol can be used as a part of light-matter interface in parallel quantum information processing and parallel quantum memoryComment: 4 pages, 3 Postscript figures, RevTeX

    Quantum parallel dense coding of optical images

    Full text link
    We propose quantum dense coding protocol for optical images. This protocol extends the earlier proposed dense coding scheme for continuous variables [S.L.Braunstein and H.J.Kimble, Phys.Rev.A 61, 042302 (2000)] to an essentially multimode in space and time optical quantum communication channel. This new scheme allows, in particular, for parallel dense coding of non-stationary optical images. Similar to some other quantum dense coding protocols, our scheme exploits the possibility of sending a classical message through only one of the two entangled spatially-multimode beams, using the other one as a reference system. We evaluate the Shannon mutual information for our protocol and find that it is superior to the standard quantum limit. Finally, we show how to optimize the performance of our scheme as a function of the spatio-temporal parameters of the multimode entangled light and of the input images.Comment: 15 pages, 4 figures, RevTeX4. Submitted to the Special Issue on Quantum Imaging in Journal of Modern Optic

    Peculiarities of charged particle kinetics in spherical plasma

    Full text link
    We describe kinetic simulations of transient problems in partially ionized weakly-collisional plasma around spherical bodies absorbing or emitting charged particles. Numerical solutions of kinetic equations for electrons and ions in 1D2V phase space are coupled to an electrostatic solver using the Poisson equation or quasineutrality condition for small Debye lengths. The formation of particle groups and their contributions to electric current flow and screening of charged bodies by plasma are discussed for applications to Langmuir probes and solar wind

    Quantum memory for images - a quantum hologram

    Full text link
    Matter-light quantum interface and quantum memory for light are important ingredients of quantum information protocols, such as quantum networks, distributed quantum computation, etc. In this Letter we present a spatially multimode scheme for quantum memory for light, which we call a quantum hologram. Our approach uses a multi-atom ensemble which has been shown to be efficient for a single spatial mode quantum memory. Due to the multi-atom nature of the ensemble it is capable of storing many spatial modes, a feature critical for the present proposal. A quantum hologram has a higher storage capacity compared to a classical hologram, and is capable of storing quantum features of an image, such as multimode superposition and entangled quantum states, something that a standard hologram is unable to achieve. Due to optical parallelism, the information capacity of the quantum hologram will obviously exceed that of a single-mode scheme.Comment: 5 pages, 3 figure

    Nanostructuring of solid surfaces by femtosecond laser pulses

    Get PDF
    One-dimensional quasi-periodic structures whose period is much smaller than the wavelength of exciting optical radiation have been obtained on a titanium surface under the multi-shot action of linearly polarized femtosecond laser radiation at various surface energy densities. As the radiation energy density increases, the one-dimensional surface nanogratings oriented perpendicularly to the radiation polarization evolve from quasi-periodic ablative nanogrooves to regular lattices with sub-wavelength periods (90-400 nmyesRussian Academy of Science

    Study of the evolution of the Cu/Nb interphase boundary by the molecular dynamics method

    Get PDF
    The evolution of atomic structure of the interphase boundary for composites from immiscible Cu/Nb elements is studied by the molecular dynamics method. It is established that the planar interphase boundary is stable at temperatures up to 1200 K. Atomic dissolution of elements is not revealed in the entire examined temperature interval, and the components are mixed on the interphase boundary of finite curvature in the form of clusters and nanolamellas; moreover, the amorphous state is not formed in the process of migration of the interphase boundaryyesBelgorod State Universit
    corecore