54 research outputs found
Efficacy of Physical Rehabilitation after Anterior Cruciate Ligament Reconstruction: Non-Randomized Trial
Background. Anterior cruciate ligament rupture is the most common knee joint injury, especially in young people with a healthy and active lifestyle. The concept of quality of life has been dynamically developing. The scope of its application is expanding in various fields of medicine to provide a comprehensive assessment of treatment and rehabilitation efficacy.Objective β to assess the feasibility of complex individual physical rehabilitation of patients after early and delayed arthroscopic reconstruction of the anterior cruciate ligament (ACL).Methods. Open simple non-randomized trial enrolled 834 patients with the anterior cruciate ligament rupture of the knee joint. In the first group (431 patients), ACL plastic surgery was performed in the early stages β between weeks 2 and 6. In the second group (403 patients), ACL reconstruction was performed in the later stages β from week 7 to 1 year, inclusive. Each group was divided into two subgroups β the main one, in which restorative treatment and comprehensive individual rehabilitation were carried out, and the control group, with rehabilitation treatment in accordance with the standards of postoperative treatment. The study was conducted in Traumatology, Orthopedics and Medical Rehabilitation Unit of Clinical Hospital No. 1. Patients were included in the trial from 2016 to 2021. The follow-up period for each patient was one year. Statistical data processing was performed by means of Statistica 12.0 (StatSoft, Inc., USA). Independent samples were compared using non-parametric criteria: Mann β Whitney U-test and Wilcoxon T-test.Results. No statistical differences were found in the distribution according to gender, age and body mass index. A comparative analysis of scale medians of Medical Outcomes Study 36Item Short-Form Health Survey (MOSSF-36), conducted in patients before surgery, revealed no statistically significant differences ( p>0.05) between the main and control subgroups in both groups. Analyzing medians before ACL reconstruction showed a significant decrease in comparison with population studies ( p < 0.0001, Mann β Whitney U-test). The analysis of physical and mental component summaries via MOSSF-36 revealed statistically significant differences in the effectiveness of treatment of patients in 1 year after ACL plastic surgery and complex individual rehabilitation. Thus, in the main subgroups, the values of treatment efficacy medians were significantly higher than in the control ones, regardless of the timing of ACL plastic surgery ( p < 0.001, Mann β Whitney U-test). The results testify to higher median efficacy values in patients of the main subgroup of group 1 than in other subgroups ( p < 0.001, Mann β Whitney U-test). The study of correlative relationships demonstrated a stronger relationship between the medians of physical and mental component summaries in the main subgroup of the first group (correlation coefficient = 0.76), if compared to the main subgroup of the second group (coefficient = 0.67).Conclusion. The study testified to the treatment efficacy proved using the scales of physical and mental component summaries. They demonstrated more significant treatment efficacy one year after arthroscopic ACL reconstruction and individual rehabilitation in the main subgroup of group 1 than in the other subgroups
Additive manufacturing of inorganic scintillator-based particle detectors
Inorganic scintillators are widely used for scientific, industrial and
medical applications. The development of 3D printing with inorganic
scintillators would allow fast creation of detector prototypes for registration
of ionizing radiation, such as alpha and beta, gamma particles in thin layers
of active material and soft X-ray radiation. This article reports on the
technical work and scientific achievements that aimed at developing a new
inorganic scintillation filament to be used for the 3D printing of composite
scintillator materials: study and definition of the scintillator composition;
development of the methods for the inorganic scintillator filament production
and further implementation in the available 3D printing technologies; study of
impact of the different 3D printing modes on the material scintillation
characteristics. Also, 3D printed scintillators can be used for creation of
combined detectors for high-energy physics.Comment: 14 pages, 16 figure
ΠΡΠ΅Π½ΠΊΠ° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ΅Π°Π±ΠΈΠ»ΠΈΡΠ°ΡΠΈΠΈ ΠΏΠΎΡΠ»Π΅ Π°ΡΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π΄Π½Π΅ΠΉ ΠΊΡΠ΅ΡΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΊΠΈ
Π¦Π΅Π»ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΈΠ»ΠΎΡΡ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΏΠΎΡΠ»Π΅ Π°ΡΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π΄Π½Π΅ΠΉ ΠΊΡΠ΅ΡΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΊΠΈ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°Π±ΠΈΠ»ΠΈΡΠ°ΡΠΈΠΈ. ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ 834 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ 18β55 Π»Π΅Ρ (464 ΠΌΡΠΆΡΠΈΠ½Ρ ΠΈ 370 ΠΆΠ΅Π½ΡΠΈΠ½) Ρ Π΄ΠΈΠ°Π³Π½ΠΎΠ·ΠΎΠΌ Β«ΡΠ°Π·ΡΡΠ² ΠΏΠ΅ΡΠ΅Π΄Π½Π΅ΠΉ ΠΊΡΠ΅ΡΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΊΠΈ ΠΊΠΎΠ»Π΅Π½Π½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π°Β». ΠΠ°ΡΠΈΠ΅Π½ΡΡ Π±ΡΠ»ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π½Π° Π΄Π²Π΅ Π³ΡΡΠΏΠΏΡ: ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΡΡ β 530 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ (302 ΠΌΡΠΆΡΠΈΠ½Ρ ΠΈ 228 ΠΆΠ΅Π½ΡΠΈΠ½), ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ΅ Π»Π΅ΡΠ΅Π½ΠΈΠ΅; ΠΎΡΠ½ΠΎΠ²Π½ΡΡ β 304 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° (162 ΠΌΡΠΆΡΠΈΠ½Ρ ΠΈ 142 ΠΆΠ΅Π½ΡΠΈΠ½Ρ), ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠΌΠΈΠΌΠΎ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΡΡ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ ΡΠ΅Π°Π±ΠΈΠ»ΠΈΡΠ°ΡΠΈΡ. ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠ±ΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠΏΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π² Ρ
ΠΎΠ΄Π΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ (Π΄ΠΎ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΠΈ ΡΠ΅ΡΠ΅Π· 1 Π³ΠΎΠ΄ ΠΏΠΎΡΠ»Π΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΠΈ ΡΠ΅Π°Π±ΠΈΠ»ΠΈΡΠ°ΡΠΈΠΈ). Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π‘ΠΏΡΡΡΡ 1 Π³ΠΎΠ΄ ΠΏΠΎΡΠ»Π΅ Π°ΡΡΡΠΎΡΠΊΠΎΠΏΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ ΠΏΠ΅ΡΠ΅Π΄Π½Π΅ΠΉ ΠΊΡΠ΅ΡΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΊΠΈ ΠΈ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°Π±ΠΈΠ»ΠΈΡΠ°ΡΠΈΠΈ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΈΠ΅ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ Π΄Π°Π½Π½ΡΠΌ ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΠΏΡΠΎΡΠ½ΠΈΠΊΠΎΠ², ΡΠ΅ΠΌ Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΎΠΉ. ΠΠ°ΠΆΠ½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎ ΡΠ°ΡΠ΅ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΈ Π²ΡΡΠΎΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»ΡΠΌΠΈ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΡ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠ΄ΠΈΠ»ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π°Π±ΠΈΠ»ΠΈΡΠ°ΡΠΈΠΈ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΠΏΠ΅ΡΠ΅Π½Π΅ΡΡΠΈΡ
Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΠΏΠΎΡΠ»Π΅ ΡΠ°Π·ΡΡΠ²Π° ΠΏΠ΅ΡΠ΅Π΄Π½Π΅ΠΉ ΠΊΡΠ΅ΡΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΠΉ ΡΠ²ΡΠ·ΠΊΠΈ, Π·Π½Π°ΡΠΈΠΌΠΎ ΡΠ»ΡΡΡΠ°Π΅Ρ ΠΈΡ
ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈ ΠΏΡΠΈΡ
ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅
- β¦