1,309 research outputs found

    Flow chemistry in Europe

    Get PDF
    This is an editorial for a Special Issu

    Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides

    Get PDF
    The direct synthesis of NOx from N2 and O2 by non-thermal plasma at an atmospheric pressure and low temperature is presented, which is considered to be an attractive option for replacement of the Haber-Bosch process. In this study, the direct synthesis of NOx was studied by packing different catalyst support materials in a dielectric barrier discharge (DBD) reactor. The support materials and their particle sizes both had a significant effect on the concentration of NOx. This is attributed to different surface areas, relative dielectric constants and particles shapes. The nitrogen could be fixed at substantially lowered temperatures by employing non-thermal plasma-catalytic DBD reactor, which can be used as an alternative technology for low temperature synthesis. The γ-Al2O3 with smallest particles size of 250–160 μm, gave the highest concentration of NOx and the lowest specific energy consumption of all the tested materials and particle sizes. The NOx concentration of 5700 ppm was reached at the highest residence time of 0.4 s and an N2/O2 feed ratio of 1 was found to be the most optimum for NOx production. In order to intensify the NOx production in plasma, a series of metal oxide catalysts supported on γ-Al2O3 were tested in a packed DBD reactor. A 5% WO3/γ-Al2O3 catalyst increased the NOx concentration further by about 10% compared to γ-Al2O3, while oxidation catalysts such as Co3O4 and PbO provided a minor (∼5%) improvement. These data suggest that oxygen activation plays a minor role in plasma catalytic nitrogen fixation under the studied conditions with the main role ascribed to the generation of microdischarges on sharp edges of large-surface area plasma catalysts. However, when the loading of active metal oxides was increased to 10%, NO selectivity decreased, suggesting possibility of thermal oxidation of NO to NO2 through reaction with surface oxygen species

    A view through novel process windows

    Get PDF
    This mini-review discusses some of the recent work on novel process windows by the Micro Flow Chemistry and Process Technology group at the Eindhoven University of Technology, and their associates. Novel process windows consist of unconventional approaches to boost chemical production, often requiring harsh reaction conditions at short to very short time-scales. These approaches are divided into six routes: the use of high temperatures, high pressures, and high concentrations (or solvent-free), new chemical transformations, explosive conditions, and process simplification and integration. Microstructured reactors, due to their inherent safety, short time-scales, and the high degree of process control, are the means that make such extreme chemistry possible

    Litteratur. Beretning om systematiske Undersøgelser af Lucernemarker i Jylland 1943—45.

    Get PDF
    Litteratur. Beretning om systematiske Undersøgelser af Lucernemarker i Jylland 1943—45
    • …
    corecore