887 research outputs found

    Failure of Mean Field Theory at Large N

    Full text link
    We study strongly coupled lattice QCD with NN colors of staggered fermions in 3+1 dimensions. While mean field theory describes the low temperature behavior of this theory at large NN, it fails in the scaling region close to the finite temperature second order chiral phase transition. The universal critical region close to the phase transition belongs to the 3d XY universality class even when NN becomes large. This is in contrast to Gross-Neveu models where the critical region shrinks as NN (the number of flavors) increases and mean field theory is expected to describe the phase transition exactly in the limit of infinite NN. Our work demonstrates that close to second order phase transitions infrared fluctuations can sometimes be important even when NN is strictly infinite.Comment: 4 pages, 3 figure

    A Class of Parameter Dependent Commuting Matrices

    Get PDF
    We present a novel class of real symmetric matrices in arbitrary dimension dd, linearly dependent on a parameter xx. The matrix elements satisfy a set of nontrivial constraints that arise from asking for commutation of pairs of such matrices for all xx, and an intuitive sufficiency condition for the solvability of certain linear equations that arise therefrom. This class of matrices generically violate the Wigner von Neumann non crossing rule, and is argued to be intimately connected with finite dimensional Hamiltonians of quantum integrable systems.Comment: Latex, Added References, Typos correcte

    The Origin of Degeneracies and Crossings in the 1d Hubbard Model

    Get PDF
    The paper is devoted to the connection between integrability of a finite quantum system and degeneracies of its energy levels. In particular, we analyze in detail the energy spectra of finite Hubbard chains. Heilmann and Lieb demonstrated that in these systems there are crossings of levels of the same parameter independent symmetry. We show that this apparent violation of the Wigner-von Neumann noncrossing rule follows directly from the existence of nontrivial conservation laws and is a characteristic signature of quantum integrability. The energy spectra of Hubbard chains display many instances of permanent (at all values of the coupling) twofold degeneracies that cannot be explained by parameter independent symmetries. We relate these degeneracies to the different transformation properties of the conserved currents under spatial reflections and the particle-hole transformation and estimate the fraction of doubly degenerate states. We also discuss multiply degenerate eigenstates of the Hubbard Hamiltonian. The wave functions of many of these states do not depend on the coupling, which suggests the existence of an additional parameter independent symmetry.Comment: 25 pages, 12 figure

    Scattering Matrix and Excitation Spectrum of the Hubbard Model

    Full text link
    We consider the one-dimensional Hubbard model at half filling. We show that both excitation spectrum and S-matrix are determined by the SO(4) symmetry of the model. The complete set of excitations is given by the scattering states four elementary excitations, which form the fundamental representation of SO(4). We evaluate the exact S-matrix, which satisfies the Yang-Baxter relation. The results for the repulsive and attractive Hubbard model are related by an interchange of spin and charge degrees of freedom.Comment: 8 pages, jyTeX (macro included - just TeX the file) ITP-SB-93-4

    Direct Observation of Field-Induced Incommensurate Fluctuations in a One-Dimensional S=1/2 Antiferromagnet

    Full text link
    Neutron scattering from copper benzoate, Cu(C6D5COO)2 3D2O, provides the first direct experimental evidence for field-dependent incommensurate low energy modes in a one-dimensional spin S = 1/2 antiferromagnet. Soft modes occur for wavevectors q=\pi +- dq(H) where dq(H) ~ 2 \pi M(H)/g\mu_B as predicted by Bethe ansatz and spinon descriptions of the S = 1/2 chain. Unexpected was a field-induced energy gap Δ(H)Hα\Delta(H) \propto H^\alpha, where α=0.65(3)\alpha = 0.65(3) as determined from specific heat measurements. At H = 7 T (g\mu_B H/J = 0.52), the magnitude of the gap varies from 0.06 - 0.3 J depending on the orientation of the applied field.Comment: 11 pages, 5 postscript figures, LaTeX, Submitted to PRL 3/31/97, e-mail comments to [email protected]

    A note on density correlations in the half-filled Hubbard model

    Get PDF
    We consider density-density correlations in the one-dimensional Hubbard model at half filling. On intuitive grounds one might expect them to exhibit an exponential decay. However, as has been noted recently, this is not obvious from the Bethe Ansatz/conformal field theory (BA/CFT) approach. We show that by supplementing the BA/CFT analysis with simple symmetry arguments one can easily prove that correlations of the lattice density operators decay exponentially.Comment: 3 pages, RevTe

    Irreducibility criterion for a finite-dimensional highest weight representation of the sl(2) loop algebra and the dimensions of reducible representations

    Full text link
    We present a necessary and sufficient condition for a finite-dimensional highest weight representation of the sl2sl_2 loop algebra to be irreducible. In particular, for a highest weight representation with degenerate parameters of the highest weight, we can explicitly determine whether it is irreducible or not. We also present an algorithm for constructing finite-dimensional highest weight representations with a given highest weight. We give a conjecture that all the highest weight representations with the same highest weight can be constructed by the algorithm. For some examples we show the conjecture explicitly. The result should be useful in analyzing the spectra of integrable lattice models related to roots of unity representations of quantum groups, in particular, the spectral degeneracy of the XXZ spin chain at roots of unity associated with the sl2sl_2 loop algebra.Comment: 32 pages with no figure; with corrections on the published versio

    New integrable extension of the Hubbard chain with variable range hopping

    Full text link
    New integrable variant of the one-dimensional Hubbard model with variable-range correlated hopping is studied. The Hamiltonian is constructed by applying the quantum inverse scattering method on the infinite interval at zero density to the one-parameter deformation of the L-matrix of the Hubbard model. By construction, this model has Y(su(2))\oplusY(su(2)) symmetry in the infinite chain limit. Multiparticle eigenstates of the model are investigated through this method.Comment: 25 pages, LaTeX, no figure
    corecore