281 research outputs found
Blocking transport resonances via Kondo entanglement in quantum dots
Many-body entanglement is at the heart of the Kondo effect, which has its
hallmark in quantum dots as a zero-bias conductance peak at low temperatures.
It signals the emergence of a conducting singlet state formed by a localized
dot degree of freedom and conduction electrons. Carbon nanotubes offer the
possibility to study the emergence of the Kondo entanglement by tuning
many-body correlations with a gate voltage. Here we quantitatively show an
undiscovered side of
Kondo correlations, which counterintuitively tend to block conduction
channels: inelastic cotunneling lines in the magnetospectrum of a carbon
nanotube strikingly disappear when tuning the gate voltage. Considering the
global \SUT\ \SUT\ symmetry of a carbon nanotube coupled to leads,
we find that only resonances involving flips of the Kramers pseudospins,
associated to this symmetry, are observed at temperatures and voltages below
the corresponding Kondo scale. Our results demonstrate the robust formation of
entangled many-body states with no net pseudospin.Comment: 9 pages, 4 figure
Subgap features due to quasiparticle tunneling in quantum dots coupled to superconducting leads
We present a microscopic theory of transport through quantum dot set-ups
coupled to superconducting leads. We derive a master equation for the reduced
density matrix to lowest order in the tunneling Hamiltonian and focus on
quasiparticle tunneling. For high enough temperatures transport occurs in the
subgap region due to thermally excited quasiparticles, which can be used to
observe excited states of the system for low bias voltages. On the example of a
double quantum dot we show how subgap transport spectroscopy can be done.
Moreover, we use the single level quantum dot coupled to a normal and a
superconducting lead to give a possible explanation for the subgap features
observed in the experiments published in Appl. Phys. Lett. 95, 192103 (2009).Comment: 18 pages, 20 figures, revised according to published versio
Driving-Induced Symmetry Breaking in the Spin-Boson System
A symmetric dissipative two-state system is asymptotically completely
delocalized independent of the initial state. We show that driving-induced
localization at long times can take place when both the bias and tunneling
coupling energy are harmonically modulated. Dynamical symmetry breaking on
average occurs when the driving frequencies are odd multiples of some reference
frequency. This effect is universal, as it is independent of the dissipative
mechanism. Possible candidates for an experimental observation are flux
tunneling in the variable barrier rf SQUID and magnetization tunneling in
magnetic molecular clusters.Comment: 4 pages, 4 figures, to be published in PR
Application of double-pulse micro-LIBS 3D compositional mapping to the analysis of ceramics
We developed a new Laser-Induced Breakdown Spectroscopy (LIBS) instrument for 3D compositional mappings of archaeological objects. The system, based on the Modì double-pulse instrument, allows the reconstruction of maps with lateral resolution up to 20 microns and sub-micron depth resolution
The tumor suppressor gene fat modulates the EGFR-mediated proliferation control in the imaginal tissues of Drosophila melanogaster
Molecules involved in cell adhesion can regulate both early signal transduction events, triggered by soluble factors, and downstream events involved in cell cycle progression. Correct integration of these signals allows appropriate cellular growth, differentiation and ultimately tissue morphogenesis, but incorrect interpretation contributes to pathologies such as tumor growth. The Fat cadherin is a tumor suppressor protein required in Drosophila for epithelial morphogenesis, proliferation control and epithelial planar polarization, and its loss results in a hyperplastic growth of imaginal tissues. While several molecular events have been characterized through which fat participates in the establishment of the epithelial planar polarity, little is known about mechanisms underlying fat-mediated control of cell proliferation. Here we provide evidence that fat specifically cooperates with the epidermal growth factor receptor (EGFR) pathway in controlling cell proliferation in developing imaginal epithelia. Hyperplastic larval and adult fat structures indeed undergo an amazing, synergistic enlargement following to EGFR oversignalling. We further show that such a strong functional interaction occurs downstream of MAPK activation through the transcriptional regulation of genes involved in the EGFR nuclear signalling. Considering that fat mutation shows di per se a hyperplastic phenotype, we suggest a model in which fat acts in parallel to EGFR pathway in transducing different cell communication signals: furthermore its function is requested downstream of MAPK for a correct rendering of the growth signals converging to the epidermal growth factor receptor. (C) 2004 Elsevier Ireland Ltd. All rights reserved
Bloch's theory in periodic structures with Rashba's spin-orbit interaction
We consider a two-dimensional electron gas with Rashba's spin-orbit
interaction and two in-plane potentials superimposed along directions
perpendicular to each other. The first of these potentials is assumed to be a
general periodic potential while the second one is totally arbitrary. A general
form for Bloch's amplitude is found and an eigen-value problem for the band
structure of the system is derived. We apply the general result to the two
particular cases in which either the second potential represents a harmonic
in-plane confinement or it is zero. We find that for a harmonic confinement
regions of the Brillouin zone with high polarizations are associated with the
ones of large group velocity.Comment: 6 pages, 5 figure
Confinement effects and acid strength in zeolites
Chemical reactivity and sorption in zeolites are coupled to confinement and—to a lesser extent—to the acid strength of Brønsted acid sites (BAS). In presence of water the zeolite Brønsted acid sites eventually convert into hydronium ions. The gradual transition from zeolite Brønsted acid sites to hydronium ions in zeolites of varying pore size is examined by ab initio molecular dynamics combined with enhanced sampling based on Well-Tempered Metadynamics and a recently developed set of collective variables. While at low water content (1–2 water/BAS) the acidic protons prefer to be shared between zeolites and water, higher water contents (n > 2) invariably lead to solvation of the protons within a localized water cluster adjacent to the BAS. At low water loadings the standard free energy of the formed complexes is dominated by enthalpy and is associated with the acid strength of the BAS and the space around the site. Conversely, the entropy increases linearly with the concentration of waters in the pores, favors proton solvation and is independent of the pore size/shape
Dental identification of unknown bodies through antemortem data taken by non-dental X-rays. Case reports
A novel scoring system for TIGIT expression in classic Hodgkin lymphoma
Clinical use of immune-checkpoints inhibitors (anti PD-1/PD-L1) resulted very effective for the
treatment of relapsed/refractory classic Hodgkin Lymphoma (CHL). Recently, T cell Ig and ITIM
domains (TIGIT) has been recognized as an immune checkpoint receptor able to negatively regulate
T cell functions. Herein, we investigated the expression of TIGIT in CHL microenvironment in order
to find a potential new target for inhibitor therapy. TIGIT, PD-1 and PD-L1 expression was evaluated
in 34 consecutive patients with CHL. TIGIT expression in T lymphocytes surrounding Hodgkin Reed-
Sternberg (HRS) cells was observed in 19/34 patients (56%), of which 11 (58%) had advanced stages.
In 16/19 (84%) cases, TIGIT+ peritumoral T lymphocytes showed also PD-1 expression. All 15 TIGIT−
patients had PD-L1 expression in HRS cells (100%) while among 19 TIGIT+ patients, 11 (58%) were
PD-L1+ and 8 (42%) were PD-L1−. Using a new scoring system for TIGIT immunoreactivity, all TIGIT+
cases with higher score (4/19) were PD-L1−. Our results confirm co-expression of TIGIT and PD-1 in
peritumoral T lymphocytes. Of relevance, we demonstrated a mutually exclusive expression of TIGIT
and PD-L1 using new TIGIT scoring system able to identify this immunocheckpoints’ modulation.
These results pave the way to new therapeutic strategies for relapsed/refractory CHL
Classification studies on Etruscan archaeological copper-based alloy findings from the Necropolis of ‘Pratino’ in Tuscania
In this communication, an extensive study and its results are presented about the composition of some Etruscan copper alloy findings. The objects came from Tomb 20 of the “Pratino” necropolis in Tuscania, near Viterbo (Italy), dating back to the late Hellenistic period. The excavation and study of the site was granted to the Lorenzo de' Medici Italian International Institute (Ld’M) in 2005. Since 2011, the activity is directed by the Center for Ancient Mediterranean and Near Eastern Studies (CAMNES). The archaeological materials were classified according to their composition, determined by a portable Energy Dispersive X-Ray Fluorescence (ED-XRF) instrument
- …