1,728 research outputs found

    Dissipative heat engine is thermodynamically inconsistent

    Full text link
    A heat engine operating on the basis of the Carnot cycle is considered, where the mechanical work performed is dissipated within the engine at the temperature of the warmer isotherm and the resulting heat is added to the engine together with an external heat input. The resulting work performed by the engine per cycle is increased at the expense of dissipated work produced in the previous cycle. It is shown that such a dissipative heat engine is thermodynamically inconsistent violating the first and second laws of thermodynamics. The existing physical models employing the dissipative heat engine concept, in particular, the heat engine model of hurricane development, are physically invalid.Comment: 9 pages, 2 figure

    Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere

    Full text link
    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams (PCBs), including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analyzed. A method for significantly reducing the SI, by averaging the signal at the detector over a set of PCBs, is described. This novel method is to generate the PCBs by combining two laser beams - Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the SI is effectively suppressed without any high-frequency modulators.Comment: 13 pages, 8 figure

    Constraints on short-range spin-dependent interactions from scalar spin-spin coupling in deuterated molecular hydrogen

    Full text link
    A comparison between existing measurements and calculations of the scalar spin-spin interaction (J-coupling) in deuterated molecular hydrogen (HD) yields stringent constraints on anomalous spin-dependent potentials between nucleons at the atomic scale (∼1A˚{\rm \sim 1 \AA}). The dimensionless coupling constant gPpgPN/4πg_P^pg_P^{N}/4\pi associated with exchange of pseudoscalar (axion-like) bosons between nucleons is constrained to be less than 5×10−75\times 10^{-7} for boson masses in the range of 5keV5 {\rm keV}. This represents improvement by a factor of about 100 over constraints placed by measurements of the dipole-dipole interaction in molecular H2{\rm H_2}. The dimensionless coupling constant gApgAN/4πg_A^pg_A^N/4 \pi associated with exchange of a heretofore undiscovered axial-vector boson between nucleons is constrained to be gApgAN/4π<2×10−19g_A^pg_A^N/4 \pi < 2 \times 10^{-19} for bosons of mass ≲1000eV\lesssim 1000 {\rm eV}, improving constraints at this distance scale by a factor of 100 for proton-proton couplings and more than 8 orders of magnitude for neutron-proton couplings. This limit is also a factor of 100 more stringent than recent constraints obtained for axial-vector couplings between electrons and nucleons obtained from comparison of measurements and calculations of hyperfine structure.Comment: 4 pages 2 figure

    Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four-wave mixing

    Get PDF
    We study the modification of a traditional electromagnetically induced transparency (EIT) stored light technique that includes both EIT and four-wave mixing (FWM) in an ensemble of hot Rb atoms. The standard treatment of light storage involves the coherent and reversible mapping of one photonic mode onto a collective spin coherence. It has been shown that unwanted, competing processes such as four-wave mixing are enhanced by EIT and can significantly modify the signal optical pulse propagation. We present theoretical and experimental evidence to indicate that while a Stokes field is indeed detected upon retrieval of the signal field, any information originally encoded in a seeded Stokes field is not independently preserved during the storage process. We present a simple model that describes the propagation dynamics of the fields and the impact of FWM on the spin wave.Comment: 13 pages, 10 figure

    Scaling the neutral atom Rydberg gate quantum computer by collective encoding in Holmium atoms

    Full text link
    We discuss a method for scaling a neutral atom Rydberg gate quantum processor to a large number of qubits. Limits are derived showing that the number of qubits that can be directly connected by entangling gates with errors at the 10−310^{-3} level using long range Rydberg interactions between sites in an optical lattice, without mechanical motion or swap chains, is about 500 in two dimensions and 7500 in three dimensions. A scaling factor of 60 at a smaller number of sites can be obtained using collective register encoding in the hyperfine ground states of the rare earth atom Holmium. We present a detailed analysis of operation of the 60 qubit register in Holmium. Combining a lattice of multi-qubit ensembles with collective encoding results in a feasible design for a 1000 qubit fully connected quantum processor.Comment: 6 figure
    • …
    corecore