8,156 research outputs found

    Optical deep space communication via relay satellite

    Get PDF
    The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed

    A combinatorial smoothness criterion for spherical varieties

    Full text link
    We suggest a combinatorial criterion for the smoothness of an arbitrary spherical variety using the classification of multiplicity-free spaces, generalizing an earlier result of Camus for spherical varieties of type AA.Comment: 14 pages, 2 table

    Carbon-Oxygen White Dwarfs Accreting CO-Rich Matter I: A Comparison Between Rotating and Non-Rotating Models

    Get PDF
    We investigate the lifting effect of rotation on the thermal evolution of CO WDs accreting CO-rich matter. We find that rotation induces the cooling of the accreting star so that the delivered gravitational energy causes a greater expansion with respect to the standard non-rotating case. The increase in the surface radius produces a decrease in the surface value of the critical angular velocity and, therefore, the accreting WD becomes gravitationally unbound (Roche instability). This occurrence is due to an increase in the total angular momentum of the accreting WD and depends critically on the amount of specific angular momentum deposited by the accreted matter. If the specific angular momentum of the accreted matter is equal to that of the outer layers of the accreting structure, the Roche instability occurs well before the accreting WD can attain the physical conditions for C-burning. If the values of both initial angular velocity and accretion rate are small, we find that the accreting WD undergoes a secular instability when its total mass approaches 1.4 Msun. At this stage, the ratio between the rotational and the gravitational binding energy of the WD becomes of the order of 0.1, so that the star must deform by adopting an elliptical shape. In this case, since the angular velocity of the WD is as large as 1 rad/s, the anisotropic mass distribution induces the loss of rotational energy and angular momentum via GWR. We find that, independent of the braking efficiency, the WD contracts and achieves the physical conditions suitable for explosive C-burning at the center so that a type Ia supernova event is produced.Comment: 39 pages, 22 eps-figures; accepted for publication in Astrophysical Journa

    Rotated twisted-mass: a convenient regularization scheme for isospin breaking QCD and QED lattice calculations

    Get PDF
    We propose a scheme of lattice twisted-mass fermion regularization which is particularly convenient for application to isospin breaking (IB) QCD and QED calculations, based in particular on the so called RM123 approach, in which the IB terms of the action are treated as a perturbation. The main, practical advantage of this scheme is that it allows the calculation of IB effects on some mesonic observables, like e.g. the pi+ - pi0 mass splitting, using lattice correlation functions in which the quark and antiquark fields in the meson are regularized with opposite values of the Wilson parameter r. These correlation functions are found to be affected by much smaller statistical fluctuations, with respect to the analogous functions in which quark and antiquark fields are regularized with the same value of r. Two numerical application of this scheme, that we call "rotated twisted-mass", within pure QCD and QCD+QED respectively, are also provided for illustration.Comment: 17 pages, 2 figure

    Scattering of 7^{7}Be and 8^{8}B and the astrophysical S17_{17} factor

    Get PDF
    Measurements of scattering of 7^{7}Be at 87 MeV on a melamine (C3_{3}N6 _{6}H6_{6}) target and of 8^{8}B at 95 MeV on C were performed. For 7^{7}Be the angular range was extended over previous measurements and monitoring of the intensity of the radioactive beam was improved. The measurements allowed us to check and improve the optical model potentials used in the incoming and outgoing channels for the analysis of existing data on the proton transfer reaction 14^{14}N(7^{7}Be,8^{8}B)13^{13}C. The resultslead to an updated determination of the asymptotic normalization coefficient for the virtual decay 8^{8}B \to 7^{7}Be + pp. We find a slightly larger value, Ctot2(8B)=0.466±0.047C_{tot}^{2}(^{8}B)=0.466\pm 0.047 fm1^{-1}, for the melamine target. This implies an astrophysical factor, S17(0)=18.0±1.8S_{17}(0)=18.0\pm 1.8 eV\cdotb, for the solar neutrino generating reaction 7^{7}Be(pp,γ\gamma )8^{8}B.Comment: 7 pages, 4 figure

    Astrophysical S factor for the radiative capture 12N(p,gamma)13O determined from the 14N(12N,13O)13C proton transfer reaction

    Get PDF
    The cross section of the radiative proton capture reaction on the drip line nucleus 12N was investigated using the Asymptotic Normalization Coefficient (ANC) method. We have used the 14N(12N,13O)13C proton transfer reaction at 12 MeV/nucleon to extract the ANC for 13O -> 12N + p and calculate from it the direct component of the astrophysical S factor of the 12N(p,gamma)13O reaction. The optical potentials used and the DWBA analysis of the proton transfer reaction are discussed. For the entrance channel, the optical potential was inferred from an elastic scattering measurement carried out at the same time with the transfer measurement. From the transfer, we determined the square of the ANC, C^2(13Og.s.) = 2.53 +/- 0.30 fm-1, and hence a value of 0.33(4) keVb was obtained for the direct astrophysical S factor at zero energy. Constructive interference at low energies between the direct and resonant captures leads to an enhancement of Stotal(0) = 0.42(5) keVb. The 12N(p,gamma)13O reaction was investigated in relation to the evolution of hydrogen-rich massive Population III stars, for the role that it may play in the hot pp-chain nuclear burning processes, possibly occurring in such objects.Comment: 15 pages, 10 figures, 3 tables submitted to Phys. Rev.

    Branching ratios for the beta decay of 21Na

    Get PDF
    We have measured the beta-decay branching ratio for the transition from 21Na to the first excited state of 21Ne. A recently published test of the standard model, which was based on a measurement of the beta-nu correlation in the decay of 21Na, depended on this branching ratio. However, until now only relatively imprecise (and, in some cases, contradictory) values existed for it. Our new result, 4.74(4)%, reduces but does not remove the reported discrepancy with the standard model.Comment: Revtex4, 2 fig

    Spectral-function determination of complex electroweak amplitudes with lattice QCD

    Get PDF
    We present a novel method to determine on the lattice both the real and imaginary parts of complex electroweak amplitudes involving two external currents and a single hadron or the QCD vacuum in the external states. The method is based on the spectral representation of the relevant time-dependent correlation functions and, by extending the range of applicability of other recent proposals built on the same techniques, overcomes the difficulties related to the analytic continuation from Minkowskian to Euclidean time, arising when intermediate states with energies smaller than the external states contribute to the amplitude. In its simplest form, the method relies on the standard iϵ prescription to regularize the Feynman integrals and at finite ϵ it requires to verify the condition 1/L≪ϵ≪Δ(E), where L is the spatial extent of the lattice and, for any given energy E, Δ(E) represents the typical size of the interval around E in which the hadronic amplitude is significantly varying. In order to illustrate the effectiveness of this approach in a realistic case, we apply the method to evaluate nonperturbatively the hadronic amplitude contributing to the radiative leptonic decay Ds→ℓνℓγ*, working for simplicity with a single lattice ensemble at fixed volume and lattice spacing
    corecore