39 research outputs found
Pressure and intermittency in passive vector turbulence
We investigate the scaling properties a model of passive vector turbulence
with pressure and in the presence of a large-scale anisotropy. The leading
scaling exponents of the structure functions are proven to be anomalous. The
anisotropic exponents are organized in hierarchical families growing without
bound with the degree of anisotropy. Nonlocality produces poles in the
inertial-range dynamics corresponding to the dimensional scaling solution. The
increase with the P\'{e}clet number of hyperskewness and higher odd-dimensional
ratios signals the persistence of anisotropy effects also in the inertial
range.Comment: 4 pages, 1 figur
On the canonically invariant calculation of Maslov indices
After a short review of various ways to calculate the Maslov index appearing
in semiclassical Gutzwiller type trace formulae, we discuss a
coordinate-independent and canonically invariant formulation recently proposed
by A Sugita (2000, 2001). We give explicit formulae for its ingredients and
test them numerically for periodic orbits in several Hamiltonian systems with
mixed dynamics. We demonstrate how the Maslov indices and their ingredients can
be useful in the classification of periodic orbits in complicated bifurcation
scenarios, for instance in a novel sequence of seven orbits born out of a
tangent bifurcation in the H\'enon-Heiles system.Comment: LaTeX, 13 figures, 3 tables, submitted to J. Phys.
Manifestation of anisotropy persistence in the hierarchies of MHD scaling exponents
The first example of a turbulent system where the failure of the hypothesis
of small-scale isotropy restoration is detectable both in the `flattening' of
the inertial-range scaling exponent hierarchy, and in the behavior of odd-order
dimensionless ratios, e.g., skewness and hyperskewness, is presented.
Specifically, within the kinematic approximation in magnetohydrodynamical
turbulence, we show that for compressible flows, the isotropic contribution to
the scaling of magnetic correlation functions and the first anisotropic ones
may become practically indistinguishable. Moreover, skewness factor now
diverges as the P\'eclet number goes to infinity, a further indication of
small-scale anisotropy.Comment: 4 pages Latex, 1 figur
Passive scalar turbulence in high dimensions
Exploiting a Lagrangian strategy we present a numerical study for both
perturbative and nonperturbative regions of the Kraichnan advection model. The
major result is the numerical assessment of the first-order -expansion by
M. Chertkov, G. Falkovich, I. Kolokolov and V. Lebedev ({\it Phys. Rev. E},
{\bf 52}, 4924 (1995)) for the fourth-order scalar structure function in the
limit of high dimensions 's. %Two values of the velocity scaling exponent
have been considered: % and . In the first case, the
perturbative regime %takes place at , while in the second at , %in agreement with the fact that the relevant small parameter %of the
theory is . In addition to the perturbative results, the
behavior of the anomaly for the sixth-order structure functions {\it vs} the
velocity scaling exponent, , is investigated and the resulting behavior
discussed.Comment: 4 pages, Latex, 4 figure
Generally covariant state-dependent diffusion
Statistical invariance of Wiener increments under SO(n) rotations provides a
notion of gauge transformation of state-dependent Brownian motion. We show that
the stochastic dynamics of non gauge-invariant systems is not unambiguously
defined. They typically do not relax to equilibrium steady states even in the
absence of extenal forces. Assuming both coordinate covariance and gauge
invariance, we derive a second-order Langevin equation with state-dependent
diffusion matrix and vanishing environmental forces. It differs from previous
proposals but nevertheless entails the Einstein relation, a Maxwellian
conditional steady state for the velocities, and the equipartition theorem. The
over-damping limit leads to a stochastic differential equation in state space
that cannot be interpreted as a pure differential (Ito, Stratonovich or else).
At odds with the latter interpretations, the corresponding Fokker-Planck
equation admits an equilibrium steady state; a detailed comparison with other
theories of state-dependent diffusion is carried out. We propose this as a
theory of diffusion in a heat bath with varying temperature. Besides
equilibrium, a crucial experimental signature is the non-uniform steady spatial
distribution.Comment: 24 page
Scaling, renormalization and statistical conservation laws in the Kraichnan model of turbulent advection
We present a systematic way to compute the scaling exponents of the structure
functions of the Kraichnan model of turbulent advection in a series of powers
of , adimensional coupling constant measuring the degree of roughness of
the advecting velocity field. We also investigate the relation between standard
and renormalization group improved perturbation theory. The aim is to shed
light on the relation between renormalization group methods and the statistical
conservation laws of the Kraichnan model, also known as zero modes.Comment: Latex (11pt) 43 pages, 22 figures (Feynman diagrams). The reader
interested in the technical details of the calculations presented in the
paper may want to visit:
http://www.math.helsinki.fi/mathphys/paolo_files/passive_scalar/passcal.htm
Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels
Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs