39 research outputs found

    Pressure and intermittency in passive vector turbulence

    Full text link
    We investigate the scaling properties a model of passive vector turbulence with pressure and in the presence of a large-scale anisotropy. The leading scaling exponents of the structure functions are proven to be anomalous. The anisotropic exponents are organized in hierarchical families growing without bound with the degree of anisotropy. Nonlocality produces poles in the inertial-range dynamics corresponding to the dimensional scaling solution. The increase with the P\'{e}clet number of hyperskewness and higher odd-dimensional ratios signals the persistence of anisotropy effects also in the inertial range.Comment: 4 pages, 1 figur

    On the canonically invariant calculation of Maslov indices

    Get PDF
    After a short review of various ways to calculate the Maslov index appearing in semiclassical Gutzwiller type trace formulae, we discuss a coordinate-independent and canonically invariant formulation recently proposed by A Sugita (2000, 2001). We give explicit formulae for its ingredients and test them numerically for periodic orbits in several Hamiltonian systems with mixed dynamics. We demonstrate how the Maslov indices and their ingredients can be useful in the classification of periodic orbits in complicated bifurcation scenarios, for instance in a novel sequence of seven orbits born out of a tangent bifurcation in the H\'enon-Heiles system.Comment: LaTeX, 13 figures, 3 tables, submitted to J. Phys.

    Manifestation of anisotropy persistence in the hierarchies of MHD scaling exponents

    Full text link
    The first example of a turbulent system where the failure of the hypothesis of small-scale isotropy restoration is detectable both in the `flattening' of the inertial-range scaling exponent hierarchy, and in the behavior of odd-order dimensionless ratios, e.g., skewness and hyperskewness, is presented. Specifically, within the kinematic approximation in magnetohydrodynamical turbulence, we show that for compressible flows, the isotropic contribution to the scaling of magnetic correlation functions and the first anisotropic ones may become practically indistinguishable. Moreover, skewness factor now diverges as the P\'eclet number goes to infinity, a further indication of small-scale anisotropy.Comment: 4 pages Latex, 1 figur

    Passive scalar turbulence in high dimensions

    Full text link
    Exploiting a Lagrangian strategy we present a numerical study for both perturbative and nonperturbative regions of the Kraichnan advection model. The major result is the numerical assessment of the first-order 1/d1/d-expansion by M. Chertkov, G. Falkovich, I. Kolokolov and V. Lebedev ({\it Phys. Rev. E}, {\bf 52}, 4924 (1995)) for the fourth-order scalar structure function in the limit of high dimensions dd's. %Two values of the velocity scaling exponent ξ\xi have been considered: %ξ=0.8\xi=0.8 and ξ=0.6\xi=0.6. In the first case, the perturbative regime %takes place at d30d\sim 30, while in the second at d25d\sim 25, %in agreement with the fact that the relevant small parameter %of the theory is 1/(d(2ξ))\propto 1/(d (2-\xi)). In addition to the perturbative results, the behavior of the anomaly for the sixth-order structure functions {\it vs} the velocity scaling exponent, ξ\xi, is investigated and the resulting behavior discussed.Comment: 4 pages, Latex, 4 figure

    Generally covariant state-dependent diffusion

    Get PDF
    Statistical invariance of Wiener increments under SO(n) rotations provides a notion of gauge transformation of state-dependent Brownian motion. We show that the stochastic dynamics of non gauge-invariant systems is not unambiguously defined. They typically do not relax to equilibrium steady states even in the absence of extenal forces. Assuming both coordinate covariance and gauge invariance, we derive a second-order Langevin equation with state-dependent diffusion matrix and vanishing environmental forces. It differs from previous proposals but nevertheless entails the Einstein relation, a Maxwellian conditional steady state for the velocities, and the equipartition theorem. The over-damping limit leads to a stochastic differential equation in state space that cannot be interpreted as a pure differential (Ito, Stratonovich or else). At odds with the latter interpretations, the corresponding Fokker-Planck equation admits an equilibrium steady state; a detailed comparison with other theories of state-dependent diffusion is carried out. We propose this as a theory of diffusion in a heat bath with varying temperature. Besides equilibrium, a crucial experimental signature is the non-uniform steady spatial distribution.Comment: 24 page

    Scaling, renormalization and statistical conservation laws in the Kraichnan model of turbulent advection

    Full text link
    We present a systematic way to compute the scaling exponents of the structure functions of the Kraichnan model of turbulent advection in a series of powers of ξ\xi, adimensional coupling constant measuring the degree of roughness of the advecting velocity field. We also investigate the relation between standard and renormalization group improved perturbation theory. The aim is to shed light on the relation between renormalization group methods and the statistical conservation laws of the Kraichnan model, also known as zero modes.Comment: Latex (11pt) 43 pages, 22 figures (Feynman diagrams). The reader interested in the technical details of the calculations presented in the paper may want to visit: http://www.math.helsinki.fi/mathphys/paolo_files/passive_scalar/passcal.htm

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs

    Predictions not commands: active inference in the motor system

    Full text link
    corecore