17 research outputs found

    On intermediate-term prediction of strong earthquakes in the himalayan arc region using pattern recognition algorithm M8

    Get PDF
    Seismicity of the Himalayan arc lying within the limits shown in figure 1 and covering the period 1964 to 1987 was scanned using M8 algorithm with a view to identifying the times of increased probabilities (TIPs) of the occurrence of earthquakes of magnitude greater than or equal to 7.0, during the period 1970 to 1987. In this period, TIPs occupy 18% of the space time considered. One of these precedes the only earthquake in this magnitude range which occurred during the period. Two numerical parameters used in the algorithm, namely the magnitude thresholds, had to be altered for the present study owing to incomplete data. Further monitoring of TIPs is however warranted, both for testing the predictive capability of this algorithm in the Himalayan region and for creating a base for the search of short-term precursors

    Ferroelectric Nanodomain Engineering in Bulk Lithium Niobate Crystals in Ultrashort-Pulse Laser Nanopatterning Regime

    Get PDF
    Ferroelectric nanodomains were formed in bulk lithium niobate single crystals near nanostructured microtracks laser-inscribed by 1030-nm 0.3-ps ultrashort laser pulses at variable pulse energies in sub- and weakly filamentary laser nanopatterning regimes. The microtracks and related nanodomains were characterized by optical, scanning probe and confocal second-harmonic generation microscopy methods. The nanoscale material sub-structure in the microtracks was visualized in the sample cross-sections by atomic force microscopy (AFM), appearing weakly birefringent in polarimetric microscope images. The piezoresponce force microscopy (PFM) revealed sub-100 nm ferroelectric domains formed in the vicinity of the embedded microtrack seeds, indicating a promising opportunity to arrange nanodomains in the bulk ferroelectric crystal in on-demand positions. These findings open a new modality in direct laser writing technology, which is related to nanoscale writing of ferroelectric nanodomains and prospective three-dimensional micro-electrooptical and nanophotonic devices in nonlinear-optical ferroelectrics. © 2022 by the authors.Russian Science Foundation, RSF, (19-12-00210)Ministry of Science and Higher Education of the Russian Federation, (075-15-2021-677)Funding text 1: The research was made possible by Russian Science Foundation (Project № 19-12-00210) https://rscf.ru/en/project/19-12-00210/.Funding text 2: The equipment of the Ural Center for Shared Use “Modern nanotechnology” of Ural Federal University (Reg.# 2968), which is supported by the Ministry of Science and Higher Education RF (Project # 075-15-2021-677), was used
    corecore