1,920 research outputs found
Many-electron effects on the x-ray Rayleigh scattering by highly charged He-like ions
The Rayleigh scattering of x-rays by many-electron highly charged ions is
studied theoretically. The many-electron perturbation theory, based on a
rigorous quantum electrodynamics approach, is developed and implemented for the
case of the elastic scattering of (high-energetic) photons by helium-like ion.
Using this elaborate approach, we here investigate the many-electron effects
beyond the independent-particle approximation (IPA) as conventionally employed
for describing the Rayleigh scattering. The total and angle-differential cross
sections are evaluated for the x-ray scattering by helium-like Ni,
Xe, and Au ions in their ground state. The obtained results
show that, for high-energetic photons, the effects beyond the IPA do not exceed
2% for the scattering by a closed -shell.Comment: 15 pages, 11 figure
Scattering of twisted relativistic electrons by atoms
The Mott scattering of high-energetic twisted electrons by atoms is
investigated within the framework of the first Born approximation and Dirac's
relativistic equation. Special emphasis is placed on the angular distribution
and longitudinal polarization of the scattered electrons. In order to evaluate
these angular and polarization properties we consider two experimental setups
in which the twisted electron beam collides with either a single well-localized
atom or macroscopic atomic target. Detailed relativistic calculations have been
performed for both setups and for the electrons with kinetic energy from 10 keV
to 1000 keV. The results of these calculations indicate that the emission
pattern and polarization of outgoing electrons differ significantly from the
scattering of plane-wave electrons and can be very sensitive to the parameters
of the incident twisted beam. In particular, it is shown that the angular- and
polarization-sensitive Mott measurements may reveal valuable information about,
both the transverse and longitudinal components of the linear momentum and the
projection of the total angular momentum of twisted electron states. Thus, the
Mott scattering emerges as a diagnostic tool for the relativistic vortex beams.Comment: 12 pages, 4 figure
Reverse-domain superconductivity in superconductor-ferromagnet hybrids: effect of a vortex-free channel on the symmetry of I-V characteristics
We demonstrate experimentally that the presence of a single domain wall in an
underlying ferromagnetic BaFe_{12}O_{19} substrate can induce a considerable
asymmetry in the current (I) - voltage (V) characteristics of a superconducting
Al bridge. The observed diode-like effect, i.e. polarity-dependent critical
current, is associated with the formation of a vortex-free channel inside the
superconducting area which increases the total current flowing through the
superconducting bridge without dissipation. The vortex-free region appears only
for a certain sign of the injected current and for a limited range of the
external magnetic field
Target effects in negative-continuum assisted dielectronic recombination
The process of recombination of a quasi-free electron into a bound state of
an initially bare nucleus with the simultaneous creation of a
bound-electron--free-positron pair is investigated. This process is called the
negative-continuum assisted dielectronic recombination (NCDR). In a typical
experimental setup, the initial electron is not free but bound in a light
atomic target. In the present work, we study the effects of the atomic target
on the single and double-differential cross sections of the positron production
in the NCDR process. The calculations are performed within the relativistic
framework based on QED theory, with accounting for the electron-electron
interaction to first order in perturbation theory. We demonstrate how the
momentum distribution of the target electrons removes the non-physical
singularity of the differential cross section which occurs for the initially
free and monochromatic electrons
Level sequence and splitting identification of closely-spaced energy levels by angle-resolved analysis of the fluorescence light
The angular distribution and linear polarization of the fluorescence light
following the resonant photoexcitation is investigated within the framework of
the density matrix and second-order perturbation theory. Emphasis has been
placed on "signatures" for determining the level sequence and splitting of
intermediate (partially) overlapping resonances, if analyzed as a function of
the photon energy of the incident light. Detailed computations within the
multiconfiguration Dirac-Fock method have been performed especially for the
photoexcitation and subsequent fluorescence emission of atomic sodium. A
remarkably strong dependence of the angular distribution and linear
polarization of the fluorescence emission is found upon the level
sequence and splitting of the intermediate overlapping resonances owing to their finite lifetime
(linewidth). We therefore suggest that accurate measurements of the angular
distribution and linear polarization might help identify the sequence and small
splittings of closely-spaced energy levels, even if they can not be
spectroscopically resolved.Comment: 9 pages, 7 figure
Crossover between different regimes of inhomogeneous superconductivity in planar superconductor-ferromagnet hybrids
We studied experimentally the effect of a stripe-like domain structure in a
ferromagnetic BaFe_{12}O_{19} substrate on the magnetoresistance of a
superconducting Pb microbridge. The system was designed in such a way that the
bridge is oriented perpendicular to the domain walls. It is demonstrated that
depending on the ratio between the amplitude of the nonuniform magnetic field
B_0, induced by the ferromagnet, and the upper critical field H_{c2} of the
superconducting material, the regions of the reverse-domain superconductivity
in the H-T plane can be isolated or can overlap (H is the external magnetic
field, T is temperature). The latter case corresponds to the condition
B_0/H_{c2}<1 and results in the formation of superconductivity above the
magnetic domains of both polarities. We discovered the regime of edge-assisted
reverse-domain superconductivity, corresponding to localized superconductivity
near the edges of the bridge above the compensated magnetic domains. Direct
verification of the formation of inhomogeneous superconducting states and
external-field-controlled switching between normal state and inhomogeneous
superconductivity were obtained by low-temperature scanning laser microscopy.Comment: 11 pages, 12 figure
Relativistic configuration-interaction calculation of transition energies in beryllium-like iron
We perform relativistic configuration-interaction calculations of the energy
levels of the low-lying and core-excited states of beryllium-like iron,
Fe. The results include the QED contributions calculated by two
different methods, the model QED operator approach and the screening-potential
approach. The uncertainties of theoretical energies are estimated
systematically. The predicted wavelengths of the K\alpha transitions in
beryllium-like iron improve previous theoretical results and compare favorably
with the experimental data
- …