7 research outputs found

    Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow

    Get PDF
    Large volcanic eruptions on Earth commonly occur with a collapse of the roof of a crustal magma reservoir, forming a caldera. Only a few such collapses occur per century, and the lack of detailed observations has obscured insight into the mechanical interplay between collapse and eruption.We usemultiparameter geophysical and geochemical data to show that the 110-squarekilometer and 65-meter-deep collapse of Bárdarbunga caldera in 2014-2015 was initiated through withdrawal of magma, and lateral migration through a 48-kilometers-long dike, from a 12-kilometers deep reservoir. Interaction between the pressure exerted by the subsiding reservoir roof and the physical properties of the subsurface flow path explain the gradual, nearexponential decline of both collapse rate and the intensity of the 180-day-long eruption

    Deformation, seismicity, and monitoring response preceding and during the 2022 Fagradalsfjall eruption, Iceland

    No full text
    Following two periods of dike intrusion in 2021 at Fagradalsfjall, Iceland, one of which led to an eruption, a third dike intrusion commenced on 30 July 2022. A sudden increase in seismicity occurred within the diking area, with approximately 1700 automatically detected earthquakes > M1 within 24 h. Strong earthquakes were felt over several days within a wider area (largest MW 5.3). The timeline and spatial distribution of seismicity suggested it resulted from diking, together with triggered seismicity in nearby areas releasing stored tectonic stress. Geodetic observations revealed displacements consistent with a dike intrusion, and geodetic modeling on 2 August revealed a best-fit model with a shallow top depth of the dike (~1 km), and high magma inflow rate (~49 m3/s). Also considering a decline in seismicity, a warning was issued that the likelihood of a new eruption in the coming days was high. An effusive eruption started the next day (3 August) on a ~375-m-long fissure, with an initial extrusion rate of 32 m3/s. The projected surface location of the dike (from the optimal model) was within 49–110 m of the eruptive fissure. We present a timeline of the activity and monitoring response in the days both preceding and following the eruption onset. We compare the details of the activity that occurred prior to this diking and eruption to the previous events at Fagradalsfjall to improve understanding of unrest preceding eruptions

    Cyclodextrin Drug Carrier Systems

    No full text
    corecore